Learning Outcomes-based Curriculum Framework (LOCF) for Post-graduate Programme

Name of the Programme: **M.Sc. Statistics** (Syllabus effective from 2020 Admission onwards)

UNIVERSITY OF KERALA Syllabus for M.Sc. Statistics

Programme Specific Outcomes (PSO) for M.Sc. Statistics

PSO1	Expertise in the field of statistical theory and its applications
PSO2	Expertise to take up responsibilities as efficient Statisticians/Statistical Officers/Research Officers/ Statistical Analytics
PSO3	Expertise on data analysis or use of statistical techniques
PSO4	Awareness on recent developments in statistical theory and practice

Structure of the Programme

Sem. No.	Course code	Name of the Course	Number of Credits
I	Core Courses (CC) STA-CC-511 STA-CC-512 STA-CC-513 STA-CC-514	Measure Theory Mathematical Methods Distribution Theory Statistical Computing	4 4 4 4
II	Core Courses(CC) STA-CC-521 STA-CC-522 STA-CC-523 STA-CC-524 STA-CC-525	Sampling Theory Applied Statistics Multivariate Analysis Probability Theory Practical 1	4 4 4 4 2
III	Core Courses (CC) STA- CC-531 STA-CC-532 STA-CC-533	Stochastic Processes Estimation Testing of Hypotheses	4 4 4
	Discipline Specific Electives (DE) STA-DE-534(i) STA-DE-534(ii) STA-DE-534(iii)	Statistical Quality Control and Reliability Modeling Advanced Probability Theory Data Mining	4 4 4
IV	Core Courses (CC)STA-CC-541STA-CC-542STA-CC-543	Nonparametric Methods Design and Analysis of Experiments Practical 2	4 4 2

	Discipline Specific Electives (DE) STA-DE-544(i) STA-DE-544(ii) STA-DE-544(iii)	Operations Research Bayesian Inference Order Statistics	4 4 4
	STA-DE-545(i) STA-DE-545(ii) STA-DE-545(iii)	Regression Analysis and Econometric Methods Actuarial Statistics Biostatistics	4 4 4
	Dissertation STA-CC-546	Dissertation	4
	Gene	ric Courses (GC)	
II	STA-GC-521	Elements of Probability Theory	2
III	STA-GC-531	Elementary Statistical Methods	2

STA – Representing Department of Statistics .CC, DE and GC –Representing Core Courses, Discipline Specific elective and Generic Courses, respectively. First numerical number 5 representing 5th level of Education. Middle numerical number 1,2,3 and 4 representing Semester 1,2,3 and 4 respectively. Last numerical number 1,2,3 etc. representing Course Numbers.

SEMESTER	: I
COURSE CODE	: STA-CC-511
COURSE TITLE	: MEASURE THEORY
CREDITS	:4

COURSE OUTCOMES

On completion of the course, students should be able to:

CO1. Explain classes of open and closed sets of R.

CO2. To understand the concept of semi-ring, ring, field, sigma-ring, sigma-field and monotone class with the help of examples.

CO3. Explain the concept of additive and totally additive set functions with the help of certain examples.

CO4. To be familiar with outer measure and counting measure.

CO5. To understand the concept of Lebesgue measure.

CO6. Identify the properties of measurable functions.

CO7. Distinguish between Lebesgue integral and Riemann integral.

CO8. State and prove monotone convergence theorem and Lebesgue dominated convergence theorem.

CO9. Explain the concept of convergence in a sequence of measurable functions.

CO10. To be familiar with the concept of absolute continuity and singularity.

CO11. State and prove Radon-Nikodym theorem.

Sl. No:	Outcomes	Taxonomy
	On completion of each module, students should be able to:	Level
Module 1.	M01. Explain and exemplify the concepts of Boral field	Understand
	M02. Prove that any finite field is also a σ –field.	Remember
	M03. Articulate the concept of classes of sets.	Understand
Module: 2	M01. State and prove Hahn-Jordan decomposition theorem.	Remember
	M02. Articulate the basic concept of measure.	Understand
	M03. Give the examples of measure like length, area and volume.	Apply
Module 3	M01. Define and exemplify measurable function.	Understand
	M02. Explain various result associated with measurable functions.	Remember
	M03. To be familiar with complete measure.	Understand

	M04. Examine various properties of a probability measure.	Analysis
Module 4	M01. To be familiar with the definition and properties of integral.	Understand
	M02. Explain Lebesgue Stieltjes measure.	Understand
	M03. State and prove Fatou's lemma.	Remember
Module 5	M01. Describe the concept of sequence of measurable functions.	Apply
	M02. Introduce the concept of product spaces and product	Understand
	measures.	
	M03. State and prove Fubini's theorem.	Remember
Module 6.	M01. State and prove Lebesgue decomposition theorem.	Remember
	M02. Articulate the concept of functions of bounded variations.	Understand
	M03. Examine the properties of Radon-Nikodym derivative	Analysis

MODULE I : Classes of open and closed sets of R, Classes of sets. Monotone class: semi-ring, ring, sigma- ring, field and sigma -field, sigma-field generated by a class of sets. Borel field.

MODULE II: Additive and countably additive set functions, Hahn – Jordan decomposition theorem. Outer measure, measure and counting measure, examples of measure like length, area and volume.

MODULE III : Lebesgue measures, Lebesgue – Stieltjes measure, Measurable functions and properties.

MODULE IV : General theory of integral and its properties, Lebesgue and Riemann integrals, Lebesue– Stieltjes integral. Theorems on integrals: Fatou's Lemma, Monotone convergence and Lebesgue dominated convergence theorems.

MODULE V: Sequences of measurable functions. Convergence in measure, Convergence in mean, Convergence a.e, almost uniform convergence and convergence in pth mean. Product spaces and product measures, Fubini's theorem.

MODULE VI : Absolute continuity and singularity, Lebesgue decomposition and Radon – Nikodym theorem, properties of Radon – Nikodym derivative, Functions of bounded variation.

REFERENCES

- Kingman and Taylor, S.J. (1977): Introduction to Measure and Probability, Cambridge University Press, Cambridge.
- Roydon, H. L. (1968) : Real Analysis, Macmillan, New York.
- Rudin, W.(1970) : Real and Complex Analysis, McGraw Hill Book Co., New York.

SEMESTER: ICOURSE CODE: STA-CC-512COURSE TITLE: MATHEMATICAL METHODSCREDITS: 4

COURSE OUTCOMES

On completion of the course, students should be able to:

CO1. Have a clear understanding of Metric space - Metric in Rn.

CO2. Explain the concept of Cauchy sequence, completeness, compactness and connectedness with the help of examples.

CO3. To have a clear knowledge on differentiability of a function.

CO4. State and prove generalized mean value theorem.

CO5. Describe the properties of Riemann- integral.

CO6. State and prove mean value theorem of integral calculus.

CO7. Identify the applications of multiple integrals.

CO8. To achieve ideas on vector space, subspaces, independence of vectors, basis and dimension.

CO9. State and prove Cayley-Hamilton theorem.

CO10. Establish the relation between algebraic and geometric multiplicity.

CO11. To achieve ideas on quadratic forms and reduction of quadratic forms and gets an ability for solving problems in these areas.

CO12. Define Moore-Penrose g-inverse and derive its properties.

Sl. No:	Outcomes On completion of each module, students should be able to:	Taxonomy Level
Module 1.	M01. To be familiar with the idea of open and closed set.M02. Find the limit point of a sequence.M03. State and prove Hein-Boral theorem.	Understand Evaluate Remember
Module: 2	M01. Find the limit and continuity of a given function.M02. Find the conditional maximum and minimum of a given function.M03. Verify generalized mean value theorem to a given function.	Apply Apply Analysis
Module 3	M01. Write the Riemann integral of the given function.	Apply

	M02. State and prove Fubini's theorem.	Remember
Module 4	M01. Find the rank of a given matrix.	Evaluate
	M02. Understand the concept of determinants and its properties.	Understand
	M03. Solve the system of linear equations.	Apply
Module 5	M01. Determine the Eigen values and Eigen vectors of the given matrix	Evaluate
	M02. Obtain the diagonal form and triangular form of a given matrix.	Apply
	M03. Write down the spectral decomposition of the given matrix	Evaluate
Module 6.	M01. Find the nature of the quadratic form.	Analysis
	M02. Articulate the concept of generalized inverse.	Understand
	M03. Obtain the g-inverse and Moore- Penrose g-inverse of the given matrix.	Apply.

MODULE I: Metric space-Metric in Rn, open set, closed set, limit point of a set, sequence in Rn-Cauchy sequence, completeness, compactness, connectedness, Hein-Boral theorem.

MODULE II: Functions in Rn, limit and continuity, differentiability, extreme values of a function (more than one variable), conditional maximum and minimum, generalized mean value theorem.

MODULE III: Reimann integrals, properties of Reimann Integrals, mean value theorem of integral calculus, multiple integrals, Fubini's theorem, Change of order of integration, transformation of variables.

MODULE IV : Vector space and subspaces, independence of vectors, basis and dimensions. Matrices and determinants, rank of a matrix, null space, and nullity, partitioned matrices, Linear transformations, matrix representation of linear transforms. Solution of system of linear equations.

MODULE V: Eigen values and eigen vectors, algebraic and geometric multiplicity of eigen values, Cayley-Hamilton theorem, Spectral decomposition of Matrices, canonical forms, diagonal form, triangular form, Jordan form.

MODULE VI: Quadratic forms, reduction of quadratic forms, generalized inverse, Moore-Penrose inverse, Jacobian of transformation, derivative of a function with respect to a vector, with respect a matrix.

REFERENCES Dissertation

- Apostol,T.M.(1987): Mathematical Analysis, 2nd edn, Narosa Publishing House, New Delhi.
- Goldberg,R.R.(1970): Methods of Real Analysis, Oxford & IBH publishing Co. (P) Ltd. NewDelhi.
- Graybill, A and Belmont, C.A.(1983): Matrices with Applications in Statistics, II Edition, John Wiley, New York.
- Pringle,R.M. and Rayner,A. A(1971): Generalised Inverse of Matrices with Application to

Statistics, Griffin, London.

• Rao,C.R (1973): Linear Statistical Inference and its Applications, Wiley Eastern, New York.

SEMESTER	:I
COURSE CODE	: STA-CC-513
COURSE TITLE	: DISTRIBUTION THEORY
CREDITS	:4

COURSE OUTCOMES

On completion of the course, students should be able to:

CO1. understand the properties of probability density functions and cumulative distribution functions.

CO2. Define expectation, and be introduced to its important linearity property.

CO3. Calculate raw moments and central moments, including their special cases, the mean and variance.

CO4. Calculate the moment generating function, and appreciate its link to moments.

CO5. Realize the difference between discrete and continuous probability distributions.

CO6. Finding conditional and marginal distributions from a bivariate probability distribution.

CO7. Apply transformation of variable technique for finding the distribution of functions of random variables and solve related problems

CO8. Explains different sampling distributions and find expressions for their probability density function.

CO9. Explain the concept of order statistics and solving problems related to it

CO10. Distinguish between partial and multiple correlation and the concept of empirical distribution function.

MODULE OUTCOMES

Sl. No:	Outcomes	Taxonomy level
	On completion of each module, students should be able to:	
Module 1	M01. Explains the basic concepts of pgf, mgf and characteristic functions	Understand
	M02. Examine various types of discrete and continuous distributions and articulate their properties	Analysis
	M30. Examine the various properties of probability distribution.	Analysis
	M04. Solving problems related to several distributions	Apply
Module 2	M01. Finding the joint, marginal and conditional pdf of a bivariate distribution	Understand
	M02. Articulate the various concepts of Conditional expectation and conditional variance	Analysis
	M03. Explains the concept of pgf, mgf and independence of a bivariate random vector	Remember
	M04. Articulate Multinomial and bivariate normal distributions and their properties in detail	Apply
Module 3	M01. Apply transformation of variable technique for finding the distribution of functions of random variables and solve related problems	Apply
	M02. Derive the distributions of sum, product and ratios of random variables	Analysis
Module 4	M01. Explain the concept of order statistics	Understand
	M02. Find the joint distribution of two order statistics	Evaluate
	M03. Calculate Distribution of functions of two order statistics	Apply
Module 5	M01. Explains different sampling distributions	Understand
	M02. Find expressions for probability density function of sampling distribution	Apply
Module 6	M01. Distinguish between partial and multiple correlation coefficient	Understand
	M02. Finding the Distribution of empirical distribution function	Evaluate
	M03. Explain the concept of generalized standard deviation.	Remember

COURSE CONTENT

MODULE I : Basic concepts in distribution theory : p.g.f., m.g.f., and characteristic function.

Univariate distributions: Binomial, Negative Binomial, Poisson, Hyper geometric, Geometric, Beta, Gamma, Normal, Log-Normal, Pareto, Weibull, Cauchy. Laplace, Logistic, Log-logistic. Rayleigh and Generalized exponential distributions.

MODULE II : Bivariate distributions: Joint, conditional and marginal distributions. Conditional expectation, conditional variance. Independence, p.g.f. and m.g.f. of bivariate random vector. Multinomial and bivariate normal distributions and their properties. Compound, Truncated and mixture distributions.

MODULE III : Functions of random variables and their distributions using transformation of variable technique: Distributions of sum, product and ratios of random variables.

MODULE IV : Order statistics: Distribution of order statistic, Joint distribution of two order statistics, Distribution of functions of two order statistics.

MODULE V : Sampling distributions: Chi-square, t distribution, and F distributions (both central and non-central) and their applications.

MODULE VI : Empirical distribution; Distribution of empirical distribution function. Correlation and regression ; simple partial and multiple correlation coefficients. Generalized standard deviation.

REFERENCES

- Anderson, T.W. (1984) Introduction to Multivariate Statistical Analysis, Macmillan Publishing Company.
- Fisz,M (1963) Probability Theory and Mathematical Statistics, 3rd Edition, John Wiley.
- Hogg,R.V. and Craig ,A.T.(1989) Introduction to Mathematical Statistics, Macmillan Publishing Company
- Johnson ,N.L. and Kotz,S. (1969) Distributions in Statistics; Discrete distributions. John Wiley and Sons ,New York.
- Johnson ,N.L. . Kotz,S. and Balakrishnan, N (1994)Continuous Univariate Distributions 1 ,2nd Edition John Wiley and Sons ,New York.
- Johnson ,N.L. . and Kotz,S. (1995) Continuous Univariate Distributions -2 ,2nd Edition, John Wiley and Sons ,New York..
- Rohatgi,V.K.(1990) An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern Ltd.

SEMESTER	:I
COURSE CODE	: STA-CC-514
COURSE TITLE	: STATISTICAL COMPUTING
CREDITS	:4

COURSE OUTCOMES

After completion of this course the students will be able to

C01.Define the basic concepts of R software and R packages

C02.Describe various concepts required for developing the R Language

C03.Build our own new functions in R

C04.Illustrate different R-Graphics facilities

C05.Perform programming of different statistical methods and procedures

C06.Interpret real life situations by using the data generated using random number generation.

Sl. No.	Outcomes	Taxonomy level
	On Completion of each module, Students should be able to:	
Module 1.	M01.Define basic concepts of statistical software R such as Basic operations in R, Mathematical functions used in R, Assign values to variables etc.	Remember
	M02.Demonstrate the important data structures such as arrays, matrix, data frames, Class function etc.	Apply
	M03. Illustrate using help facilities in R	Apply
	M04. Summarize an overview of R packages	Understand
Module.2	M01.Design an overview of the R Language such as Expressions, Objects, Symbols, Functions, Special Values, R Syntax- Constants, Numeric vectors, Character vectors, Symbols, Operators, Order of operations, Assignments, Expressions.	Create
	M03. Demonstrate the use of control Structures- Conditional Statements, Loops, Accessing data Structures,	Apply
	M04. Illustrate the use of R Objects such as Vectors, Lists, Matrices, Arrays, Factors, Data Frames, Formulas, Time series.	Apply
Module.3	M01.Describe the use of Functions- The function keyword, Arguments, Return values, Functions as arguments, properties of functions	Understand
	M02. Demonstrate the use of writing functions in R. M03.Perform working with data – Entering data within R, Importing data from external files, Exporting data,	Apply
	Combining data sets, Merging data.	Apply

Module 4	M01. Demonstrate the use of R-Graphics: An overview of R	Apply
	graphics, Scatterplots, Bar charts, Histogram, Pie	11.5
	charts.	Apply
	M02. Illustrate the use of Plotting distributions, Plotting time	
	series, Box plots, Stem and lead plot,Q-Q plots.	Understand
	M03. Summarize the use of Graphical parameters, Basic	
	graphic functions.	
	M04. Demonstrate drawing of mathematical functions,	Apply
	Logarithmic functions, Trigonometric functions,	
	polynomial functions.	C (
Module 5	M01. Develop programming of basic statistical methods and	Create
	procedures such as Descriptive Statistics, Graphical representation of data, Measures of Central	
	tendency, Measures of dispersion, Measures of skewenss	
	and kurtosis	
	M02. Choose representative samples	Evaluate
	M03.Evaluation of different probability distributions, Fitting	Evaluate
	of probability distributions - Binomial, Poisson,	
	Normal.	
	M04. Analyze statistical inference using R- Plots to check	Analyze
	normality, Hypothesis testing – Parametric and non-	
	parametric tests concerning means, Testing proportions	
	of one sample and two samples. One way ANOVA and	
	its nonparametric version. Goodness of fit tests,	
	M05. Illustrate the concept of simple correlation and	Analyze
Module 6	regression.	Understand
wodule 6	M01. Describe general techniques for simulating continuous random variables - Inverse transformation method,	Understand
	acceptance rejection method.	
	M02. Perform techniques for simulating continuous random	Apply
	variables – Uniform, Exponential, Cauchy, Normal,	, pp,
	Gamma, Beta distributions.	
	M03. Perform simulating from discrete distributions-	Apply
	Binomial, Poisson, Geometric distribution.	11 5

MODULE I: Introduction to the statistical software R, Basic operations in R, Mathematical functions used in R, Assign values to variables, Introduction to data structures - arrays, matrix, data frames. Class function, Getting help, An overview of R packages

MODULE II: An overview of the R Language- Expressions, Objects, Symbols, Functions, Special Values. R Syntax- Constants, Numeric vectors, Character vectors, Symbols, Operators, Order of operations, Assignments, Expressions, Control Structures- Conditional Statements,

Loops, Accessing data Structures, R Objects- Vectors, Lists, Matrices, Arrays, Factors, Data Frames, Formulas, Time series.

MODULE III: Functions- The function keyword, Arguments, Return values, Functions as arguments, properties of functions, Writing functions in R. Working with data – Entering data within R, Importing data from external files, Exporting data, Combining data sets, Merging data.

MODULE IV: R-Graphics: Graphics- An overview of R graphics, Scatterplots, Bar charts, Histogram, Pie charts, Plotting distributions, Plotting time series, Box plots, Stem and lead plot, Q-Q plots, Graphical parameters, Basic graphic functions, Drawing- mathematical functions, Logarithmic functions, Trigonometric functions, polynomial functions.

MODULE V: Programming of statistical methods and procedures: Descriptive Statistics, Graphical representation of data, Measures of Central tendency, Measures of dispersion, Measures of skewenss and kurtosis, Selection of representative samples, Computations of different probability distributions, Fitting of probability distributions - Binomial, Poisson, Normal. Statistical inference using R- Plots to check normality, Hypothesis testing – Parametric and non-parametric tests concerning means, Testing proportions of one sample and two samples. One way ANOVA and its nonparametric version. Goodness of fit tests, Simple correlation and regression.

MODULE VI: Random variable generation: General techniques for simulating continuous random variables - Inverse transformation method, acceptance rejection method. Techniques for simulating continuous random variables – Uniform, Exponential, Cauchy, Normal, Gamma, Beta distributions. Simulating from discrete distributions- Binomial, Poisson, Geometric distribution.

REFERENCES

- Everitt, B.S. and Hothorn T. (2010) A Handbook of Statistical Analysis Using R, Second Edition, CRC Press.
- Joseph Adler (2011) R in a Nutshell, Second Edition, Shroff Publishers and Distributors Pvt. Ltd.
- Michael J. Crawley (2013) The R book, Second Edition, John Wiley & Sons Ltd.
- Rubinstein, R.Y. (1981) Simulation and Monte Carlo Methods, Wiley.

SEMESTER	: II
COURSE CODE	: STA-CC-521
COURSE TITLE	: SAMPLING THEORY
CREDITS	:4

COURSE OUTCOMES

On completion of the course, students should be able to:

CO1. Understand the principles underlying sampling as a means of making inferences about a population.

CO2. Collect data from a smaller part of a large group so that the students can able to learn something about the larger group.

CO3. understand the difference between randomization theory and model based analysis.

CO4. understand the concepts of bias and sampling variability and strategies for reducing these.

CO5. Analyse data from multi-stage surveys.

CO6. have an appreciation of the practical issues arising in sampling studies.

Sl. No:	Outcomes	Taxonomy level
	On completion of each module, students should be able	
	to:	
Module 1	M01. Distinguish between ordered and unordered sampling	Understand
	method	
	M02. Use various procedures of selecting samples	Apply
	from the population	
	M30. Explain method of selecting samples using	Evaluate
	simple random sampling. M04. Articulate the estimation of population mean,	Apply
	total and proportion and hence the estimation of the	
	standard error.	
	M05. Explain determination of sample size and	
	confidence interval	Evaluate
Module 2	M01. Explain PPS sampling and articulate to selection	Evaluate
	procedures using PPS with and without replacement	
	M02. Find methods to estimate population mean, total and	
	variance with respect to PPS sampling	Apply
	M03. Apply various selection procedures for selecting	Apply
	samples using PPS	
Module 3	M01. Explain the purpose of stratification	Evaluate
	M02. Explain stratified random sampling	Understand
	M03. Examine the various properties of stratified sampling	Evaluate
	M04. Explain the concept of double sampling	Understand
	M05. Discuss various allocation procedures	Analysis

Module 4	M01. Explain systematic sampling	Understand
	M02. Distinguish between single start linear systematic	Evaluate
	sampling and multiple start linear systematic sampling	
	M03. Describe the comparison of simple random sample,	Understand
	systematic sample and stratified sample for a population with	
	linear trend	
Module 5	M01. Distinguish between ratio and regression estimators	Understand
	M02. Explain various properties of ratio and regression	Apply
	estimators	
	M03. Discuss ratio and regression estimator for stratified	Analysis
	population	
Module 6	M01. Explain cluster sampling.	Understand
	M02. Distinguish between clusters of equal and unequal sizes.	Remember
	M03. Describe the two-stage cluster sampling of equal size	Evaluate
	and unequal size.	

MODULE I: Ordered and unordered sampling designs, Probability sampling. Simple random sampling with replacement and without replacement. Procedures of selection, Estimation of population mean, total, proportion and variance. Estimation of standard errors of these estimators. Confidence intervals. Determination of sample size. Quota sampling and Snowball sampling.

MODULE II: Sampling with varying probabilities: Probability proportional to size (PPS) sampling, Procedure of selecting a PPS sample with and without replacement. Estimation of population mean, total and variance in PPS sampling with replacement. Estimated standard error of estimator of population mean and total. Estimation of population mean in PPS sampling without replacement. Des Raj ordered estimator, Murthy's unordered estimator, Horvitz-Thompson estimator and their estimated standard errors .Yates –Grundy estimator, Midzuno-Sen scheme of sampling, IPPS sampling.

MODULE III: Stratified random sampling: Purpose of stratification, Estimation of population mean and its variance, Various methods of allocation, comparison with unstratified simple random sampling, Estimation of population mean with post-stratification, Effect of using inaccurate stratum size, concept of double sampling and its applications in stratified random sampling when strata sizes are unknown and for Neyman method of allocation, Estimation with stratified PPS sample.

MODULE IV: Systematic sampling; single start linear systematic sampling and multiple start systematic sampling, Circular systematic sampling, selection procedures. Advantages and disadvantages, Estimation of population mean and its variance, Comparison of systematic sampling with simple random sampling, Comparison of systematic sample, SRS and stratified random sample for a population with linear trend.

MODULE V: Estimation of population mean using auxiliary information: Ratio estimator and its properties . First order expression of bias, mean square error and comparison with simple arithmetic mean estimator. Optimum property of ratio estimator. Sampling schemes that provide unbiased ratio estimator. Hartley-Ross unbiased ratio type estimator. Confidence interval of population ratio. Ratio estimator with double sampling. Optimum procedure with cost consideration. Separate and combined ratio estimator for stratified population. Regression estimator and its properties First order expression of bias, mean square error. Comparison with simple arithmetic mean estimator and ratio estimator. Optimum property . First order expression of bias, mean square error and comparison with simple arithmetic mean estimator with double sampling. Separate and combined regression estimators.

MODULE VI: Cluster sampling with equal and unequal clusters. Estimators of population mean and their estimated standard errors. Relative efficiency of cluster as unit of sampling compared to a single element as unit of sampling. Two stage sampling: Two stage sampling with equal first stage units-estimator of population mean, its standard error and its estimator. Two stage sampling with unequal first stage units-estimators of population mean and their properties. Estimation of standard error of estimators of population mean. Two stage sampling with equal first stage units and sampling is done according to PPS at the first stage and simple random sampling at the second stage. Estimation of the population mean and its variance. Non sampling errors, Various factors, methods of reducing non-response.

REFERENCES

- Cochran, W.G. (1977). Sampling Techniques, Wiley Eastern Ltd.
- Murthy, M. N. (1967). Sampling Theory and Methods, Statistical Publishing Society, Calcutta.
- Singh, D. and Chaudhary, F.S. (1986). Theory and Analysis of Sample Survey Designs, Wiley Eastern Ltd.
- Sukhatme, P.V., Sukhatme, B.V., Sukhatme, S. and Asok, C. (1984). Sampling Theory of Surveys With Applications, Indian Society of Agricultural Statistics, New Delhi.

SEMESTER	: II
COURSE CODE	: STA-CC-522
COURSE TITLE	: APPLIED STATISTICS
CREDITS	:4

After completion of this course the students will be able to

COURSE OUTCOMES

- C01. Generate different components of a time series data
- C02. List the important terms of stationary time series
- C03. Choose an appropriate model for time series data using the concept of linear time series models
- C04. Analyze the prices of different commodities using the concept of Index Numbers
- C05. Predict the vital events of humans such as mortality, fertility, longevity etc. using the concept of vital Statistics
- C06. Describe the official Statistics system of India and world

Sl.No.	Outcomes	Taxonomy level
	On Completion of each module, Students should be able to:	
Module 1.	M01. Constructs the decomposition of a Time Series	Applying
	M02.Evaluates the secular trend of a time series using methods like method of fitting mathematical curves, Method of moving averages	Evaluating
	M03. Evaluates the Seasonal fluctuations of time series using Method of simple Averages, Ratio to trend method, Ratio to Moving average method and Link relative method	Evaluating
Module.2	M01: Define stationary time series	Remember
	M02:Summarize General linear process and its basic terms like Auto covariance, Auto correlation and their properties, Auto covariance generating function	Understand
	M03: Develop Stationarity and invertibility conditions	Create
	M04: Demonstrate Exponential and moving average smoothing, Holt-winter smoothing.	Apply
Module.3	M01: Evaluate the Stationarity conditions, Autocorrelation	Evaluate
	function of Autoregressive processes M02:Develope Yule Walker estimation for AR processes and Partial autocorrelation function	Create
	M03:Generate Invertibility conditions, Autocorrelation function and Partial autocorrelation function of moving average process	Create
Module 4	M01. Develop the problem of Index Numbers, Calculation of the Indexes Ratio of simple aggregates, Ratio of weighted aggregates, Choice of a base period, fixed base and chain base methods	Create
	M02.List the advantages and disadvantages, Errors in Index Number Formulae-Formula error, Sampling error and Homogeneity error.	Remember
	M03.Summarize the Different Tests of a good Index Number-	Understand

	Unit test, Time Reversal test, Factor reversal test and circular test. Cost of living Index Number.	
Module 5	M01. Explain different measures of Mortality-Crude death rate, Specific death rate. Adjusted Measures of Mortality-Direct method of adjusting, Indirect method of adjusting.	Understand
	M02.Perform calculation of life-tables, Force of Mortality, Abridged life table, Uses of life table.	Apply
	M03. Explain different measures of Fertility- Crude birth rate, General fertility rate, Age specific fertility rate, Total fertility rate.	Understand
	M04.Design measurement of population growth- Crude rate of natural increase, Gross reproduction rate, Net reproduction rate.	Create
Module 6	M01. Discuss Indian Statistical System, International Statistical System	Understand
	M02.Outline Functions and Activities of Ministries of Statistics and Programme Implementation and Central Statistical Organization	Remember
	M03.Demonstarte the working of Annual survey of industries, Agricultural census in India, National Sample Survey Organization, Population Census, Introduction to system of National Accounts.	Apply

MODULE I: Time Series Analysis: Decomposition of a Time Series, Measurement of Secular Trend - method of fitting mathematical curves, Method of moving averages, Merits and demerits of each methods, Measurement of Seasonal Fluctuations- Method of simple Averages, Ratio to trend method, Ratio to Moving average method, Link relative method, Merits and demerits of each methods.

MODULE II: Time series as a discrete parameter stochastic processes, stationary time series: General linear process, Auto covariance, Auto correlation and their properties, Auto covariance generating function, Stationarity and invertibility conditions, Exponential and moving average smoothing, Holt-winter smoothing.

MODULE III: Detailed study of the linear time series models: Autoregressive processes - Stationarity conditions, Autocorrelation function, Yule Walker estimation for AR processes and Partial autocorrelation function, Moving average process - Invertibility conditions, Autocorrelation function and Partial autocorrelation function.

MODULE IV: Economic Statistics: The problem of Index Numbers, Calculation of the Indexes – Ratio of simple aggregates, Ratio of weighted aggregates, Choice of a base period, fixed base and chain base methods- Advantages and disadvantages, Errors in Index Number Formulae-Formula

error, Sampling error and Homogeneity error. Different Tests of a good Index Number-Unit test, Time Reversal test, Factor reversal test and circular test. Cost of living Index Number.

MODULE V: Vital Statistics: Measures of Mortality-Crude death rate, Specific death rate. Adjusted Measures of Mortality-Direct method of adjusting, Indirect method of adjusting. Life table-Calculation of life-tables, Force of Mortality, Abridged life table, Uses of life table. Measurement of Fertility- Crude birth rate, General fertility rate, Age specific fertility rate, Total fertility rate. Measurement of population growth- Crude rate of natural increase, Gross reproduction rate, Net reproduction rate.

MODULE VI: Official Statistics: Indian Statistical System, International Statistical System, Functions and Activities of Ministries of Statistics and Programme Implementation and Central Statistical Organization, Annual survey of industries, Agricultural census in India, National Sample Survey Organization, Population Census, Introduction to system of National Accounts.

REFERENCES

- Alan Pankratz (1994): Forecasting with Univariate Box-Jenkin Models, John Wiley.
- Anderson, T.W. (1971): Statistical Analysis of Time series, wiley.
- Basic Statistics Relating to the Indian Economy (CSO) 1990.
- Box, G.E.P., Jenkins G.M. and Reinsel, G.C. (2007) Time Series Analysis, Forecasting and Control, Pearson Education.
- Chatfield, C. (1980): The Analysis of Time Series-An Introduction, Second edition, Chapman and hall.
- Cox, P.R. (1957): Demography, Cambridge University Press.
- Goon, A.M., Gupta, M.K. and Dasgupta, B. (1986): Fundamentals of Statistics, Vol. II, World Press, Calcutta.
- Guide to Official Statistics (CSO) 1995.
- Medhi, J. (1992): Statistical methods: An Introductory Text, New Age, Delhi.
- Mukhopadhyay, P. (1999): Applied Statistics, New Central Book Agency Pvt. Ltd., Calcutta.
- Ramakumar, R. (1986): Technical Demography, Wiley Eastern.
- Statistical System in India (CSO) 1995.

SEMESTER	: II
COURSE CODE	: STA-CC-523
COURSE TITLE	: MULTIVARIATE ANALYSIS
CREDITS	:4

COURSE OUTCOME

On completion of the course, students should be able to:

CO1: Describe multivariate normal distribution and its properties

CO2: Find the marginal and conditional distribution of multivariate normal distribution

CO3: Find the distribution of quadratic forms of multivariate normal vectors

CO4: Describe Wishart distribution and its properties

CO5: Obtain the estimators for parameters of multivariate normal distribution

CO6: Describe multiple and partial correlation coefficients

CO7: Define sample multiple and sample partial correlation coefficients for multivariate normal vector

CO8: Test the hypothesis regarding parameters of multivariate normal distribution

CO9: Use Hotelling's T² and Mahalanobis D² statistics for testing hypothesis

CO10: Perform Multivariate data analysis

MODULE	Module outcomes	Taxonomy
	On completion of each module, students should be able to:	Level
MODULE 1	MO1: Define the multivariate normal density function.	Remember
	MO2: Obtain the characteristic function of multivariate normal	Understand
	density	
	MO3: Find the distribution of linear combination of	Apply
	multivariate normal random vector using characteristic function	11.5
	MO4: Find regression of multivariate normal distribution using	Apply
	conditional distribution	11 0
MODULE 1I	MO1: Characterize quadratic forms of multivariate distribution.	Apply
	MO2: Obtain the distribution of sums and quotients of	Apply
	quadratic forms.	
	MO3: Apply Cochran's theorem to find distribution of	Apply
	quadratic forms of multivariate normal random vector	
MODULE III	MO1: Obtain the MLEs of mean and variance of multivariate	Evaluate
	normal distribution	
	MO2 : Find the characteristic function of Wishart distribution	Apply
	MO3 : Show that Wishart distribution possess additive property	Understand
	MO4 : Find the distribution of sample dispersion matrix	
		Remember
MODULE IV	MO1: Find the distribution of sample multiple correlation for	Remember
	multivariate normal distribution	
	MO2: Find the distribution of sample partial correlation	Apply
	coefficients for multivariate normal distribution	
	MO3: Obtain the distribution of test statistic for the test the	Apply
	significance of correlation coefficient and partial correlation	
	coefficient.	
MODULE V	MO1: Test the mean vector of a multivariate normal	Apply

	distribution	
	MO2: Test the equality of means of two or more multivariate normal distributions	Apply
	MO3: Use Hotelling's T^2 and Mahalanobis D^2 statistics in testing hypothesis regarding multivariate normal distributions.	Apply
	MO4: Find the relationship between Hotelling's T^2 and Mahalanobis D^2 statistics	Understand
MODULE VI	MO1: Perform principal component analysis and factor analysis MO2: Classify individuals/items in to one of k multivariate normal populations MO3: Identify canonical variables and quantify canonical correlation	Analysis Analysis Analysis

MODULE I: Multivariate normal distribution, properties, characteristic function, standard characteristics, marginal and conditional distributions, distribution of linear combinations of normal variates.

MODULE II: Distribution of quadratic forms in normal variables, distribution of sums and quotient of independent quadratic forms, Cochran's theorem.

MODULE III : Samples from multivariate normal distribution, M.L.E. of mean vector and dispersion matrix, distribution of sample mean vector, Wishart distribution: definition, analogy with chi-square distribution, characteristic function, additive property, generalized variance, partitioned Wishart matrix, Distribution of sample dispersion matrix.

MODULE IV : Sampling distribution of correlation matrix and simple correlation coefficient, multiple correlation coefficient, partial correlation coefficient, distribution of the sample multiple correlation and partial correlation under null case, tests of significance.

MODULE V : Tests of hypothesis about mean vector of a multivariate normal distribution, equality of means of two multivariate normal distributions, Hotelling's T^2 , Mahalanobi's D^2 .

MODULE VI : Classification problem- classifying to one of k multivariate normal populations, Bayes solution, Fisher's discriminant function, principal component analysis; canonical variables and canonical correlations, basics of factor analysis and cluster analysis.

REFERENCES

• Anderson, T.W. (2003) : An Introduction to Multivariate Statistical Analysis, John Wiley, New York.

- Graybill, F. A. (1961): An Introduction to Linear Statistical Model, Vol. 1, McGraw Hill, New York.
- Johnson, R and Wychern (1992): Applied Multivariate Statistical Analysis, Prentice hall, London.
- 4. Kendall, M. G. (1958) : A Course in Multivariate Analysis, Griffin, London.
- Khatri, C.G. and Srivastava (1979) : An Introduction to Multivariate Statistics, North Holland, New York.
- Muirhead, R.J. (1982): Aspects of Multivariate Statistical Theory, John Wiley & Sons New York.
- Rao, C.R.(1973) : Linear Statistical Inference and its Applications, Wiley Eastern, New York.
- Rohatgi, V.K.(1976): An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern Ltd, New York.

SEMESTER	: 11
COURSE CODE	: STA-CC-524
COURSE TITLE	: PROBABILITY THEORY
CREDITS	:4

COURSE OUTCOMES

On completion of the course, students should be able to:

CO1. Identify a probability measure and explain its properties

CO2. Solve problems based on various properties of a probability measure

CO3. Apply the concepts of Bayes theorem and solve related problems

CO4. Distinguish between a discrete and continuous type random variables and illustrate with examples

CO5. Verify the properties of important functions of random variables

CO6. Calculate the expectation and moments of random variables and random vectors

CO7. Identify the applications of various moment inequalities

CO8. Explain the concept of convergence and check for the of convergence of a given sequences of random variables.

CO9. Find the expressions for the characteristic function of a random variable and verify its properties

C10. Apply the various laws of large numbers to sequences of random variables.

Sl. No:	Outcomes	Taxonomy
	On completion of each module, students should be able to:	Level

Module 1.	M01. Explain and exemplify the concepts of probability space	Understand
	M02. Examine the various properties of a probability measure.	Analysis
	M03. State and explain various results associated with probability	Understand
	measure	
	M04. Explain the concepts of independence of events	Remember
	M05. Construct examples of independent events	Create
	M06. Construct counter examples for proving/illustrating certain	Create
	results associated with probability measure	
	M07. Evaluate the conditional probability and verify its properties	Evaluate
	M08. Articulate the Bayes theorem and apply it to calculate apriori	Apply
	probabilities	11 5
Module: 2	M01. Distinguish between various types of random variables and	Apply
	articulate their properties	
	M02. Describe the various functions of random variables and find	Apply
	the functions for various random variables	· · · PP·J
	M03. Explain and exemplify the concepts of decomposition of	Understand
	distribution function of a random variable	0
	M04. Articulate/exemplify various types of distributions and their	
	important properties	Understand
Module 3	M01. Calculate the mathematical expectation, moments and	Evaluate
Wiodule 5	generating functions of random variables	Lvuluute
	M02. Explain the concepts of random vectors and distribution	Understand
	function of random vectors, and their important properties	Chaeistana
	M03. Articulate the various moment inequalities	Understand
	M04. Apply the various moment inequalities to various distributions	Apply
Module 4	M01. Articulate and appraise stochastic convergence of sequence of	Understand
Wodule 4	random variables	Onderstand
	M02. Apply the concepts of convergence to sequences of random	Evaluate
	variables	Lvaruate
	M03. Construct counter examples for not satisfying certain	Create
	convergence implications	Create
Module 5	M01. Derive expressions for the characteristic function for various	Evaluate
Wiodule 5	distributions	Lvaruate
	M02. Find moments using characteristic function	Evaluate
	M03. Derive expressions for the probability density function	Evaluate
	corresponding to a given characteristic function	Lvaluate
	M04. Articulate the various theorems associated with the	Apply
	characteristic function and identify their applications	Арргу
	M05. Explain and exemplify the concepts of infinitely divisible	Understand
	distributions	Onderstand
Module 6.	M01. State and prove the various laws of large numbers	Understand
	M02. Apply the laws to sequences of random variables	Apply
	M02. Apply the laws to sequences of failed in variables M03. Articulate the concepts of stable distributions	Understand
		Understand
	M04. Explain the concepts of Stable distributions and distribution of class L	Understand
	Class L	

MODULE I: Probability space, limit of sequence of events, monotone and continuity properties of probability measure, addition theorem, independence of finite number of events, sequence of events, tail events and tail fields, Borel Cantelli lemma, Borel zero one law. Conditional Probability and Bayes Theorem.

MODULE II: Random variable, its probability distribution and distribution function, properties of distribution function, decomposition of distribution function, discrete and continuous type random variables, discrete & continuous and other types of distributions,

MODULE III: Mathematical expectation, moments of random variables, random vectors, independence of random variables and sequence of random variables, Markov, Chebyshev's and Lyapounov inequalities.

MODULE IV: Stochastic convergence of sequence of random variables:- convergence in distribution, convergence in probability, almost sure convergence and convergence in the rth mean, their interrelationships, examples and counter examples, Helly's and Helly-Bray theorems (statements only).

MODULE V: Characteristic function and their elementary properties, uniform continuity and nonnegative definiteness of characteristic function, characteristic function and moments, inversion theorem (proof not required), uniqueness theorem, Fourier inversion theorem, continuity theorem, Bochner-Khintchine theorem of characteristic functions(proof not required), infinite divisibility of distributions(definition and elementary properties).

MODULE VI: Stochastic convergence of series of random variables:-Law of large numbers, weak law of large numbers: Bernoulli, Chebyshev & Khintchine, Kolmogorov inequality, strong law of large numbers: Kolmogorov- iid & non-iid cases (proof not required), central limit theorem: Classical, Demoiver-Laplace, Liapounov and Lindberg-Feller (without proof), Stable distributions: distribution of class L, stable distributions & domain of attraction(definition and examples only).

REFERENCES

- Bhat, B.R. (1985): Modern Probability Theory: An Introductory Text Book, 2nd edition, Wiley Eastern.
- Gnedenoko, B.V. (1969): The Theory of Probability, Mir Publishers, Moscow.
- Laha, R.G. and Rohatgi, V.K. (1979) : Probability Theory, John Wiley, New York
- Loeve, M. (1968): Probability Theory, D.Van Nostrand Co.Inc., Princeton, New Jersey.

SEMESTER	: II
COURSE CODE	: STA-CC-525
COURSE TITLE	: PRACTICAL-I
CREDITS	:2

After completion of this course the students will be able to

COURSE OUTCOMES

- C01. Evaluate the trend and seasonal fluctuations of a real life time series data using R programming language
- C02. Formulate different Index numbers for economic data
- C03. Demonstrate different sampling techniques using real life data set

CO4. Outline relative efficiency of sampling procedures

C05. Illustrate different statistical tests using the software SPSS

C06. Interpret different multivariate techniques using SPSS

Sl.No.	Outcomes	Taxonomy level
	On Completion of each module, Students should be able to:	
Module 1.	M01. Evaluate the Trend component of a time series using	Evaluate
	different methods like Method of Semi-Averages,	
	Method of Curve fitting, Moving average Method Using	
	the R programming	
	M02. Generate the Seasonal component of a time series using	Create
	different method like method of simple averages, Ratio	
	to trend method, Ratio to moving average method, Link	
	relative method Using the R programming	
Module.2	M01. Generate different Index numbers using different	Create
	methods like Simple Aggregate method, Weighted	
	aggregate method: Laspeyres, Paasches', Bowley,	
	Marshall-Edgeworth, Fisher index numbers,	
	Computation of cost of living index numbers Using the R	
	programming	
	M02. Calculate different measures of mortality such as CDR,	. 1
	SDR, completing of missing life table, computation of	Apply
	measures of Fertility such as CBR, GFR, SFR, TFR,	
	GRR, NRR Using the R programming	
Module.3	M01. Design different sampling techniques such as Simple	Create
wiodule.5	random sample with and without replacement, PPS	Create
	sample, with and without replacement, Midzuno-Sen	
	sample, linear systematic sample, circular systematic	
	sample, multiple start systematic sample Using the R	
	sample, multiple start systematic sample Using the K	

		1
	 programming. M02.Determine different estimates such as Estimate of population mean (total) and estimate of standard error of the estimate of mean(total based upon a simple random sample with or without replacement, linear systematic sample, circular systematic sample, multiple start systematic sample ,stratified random sample, cluster sample, two stage sample). Estimated gain in efficiency due to stratification Using the R programming. 	Apply
Module 4	M01. Outline relative efficiency of cluster as a unit of sampling compared to an element as unit of sampling, Relative efficiency of two stage sampling and systematic sampling Using the R programming.	Remember
	M02. Evaluate Ratio and regression estimator of population mean based on a simple random sample without replacement Using the R programming.	Evaluate
Module 5	M01. Perform tests of hypothesis such as Compare means- one sample t- test, two sample test, independent sample t test, chi-square test using the software SPSS.M02. Illustrate the concepts of correlation and Regression-	Apply
	simple and multiple using the software SPSS.	Apply
Module 6	M01. Perform tests of hypothesis using multivariate data such as Equality of means of two multivariate normal vectors	Apply
	M02.Analyze the multivariate data using the multivariate techniques such as Canonical correlation, Principal component analysis, Factor analysis, Cluster analysis.	Analyze

MODULE 1: (Using R programming) Measurement of the Trend: Method of Semi-Averages, Method of Curve fitting, Moving average Method, Measurement of Seasonal Fluctuations: Method of simple averages, Ratio to trend method, Ratio to moving average method, Link relative method.

MODULE 1I: (Using R programming) Calculation of the Index numbers: Simple Aggregate method, Weighted aggregate method: Laspeyres, Paasches', Bowley, Marshall-Edgeworth, Fisher index numbers, Computation of cost of living index numbers Computation of different measures of mortality: CDR, SDR, completing of missing life table, computation of measures of Fertility: CBR, GFR, SFR, TFR, GRR, NRR.

MODULE III: (Using R programming) Selection of a random sample :Simple random sample with and without replacement, PPS sample, with and without replacement, Midzuno-Sen sample ,linear systematic sample, circular systematic sample, multiple start systematic sample.

Estimation; Estimate of population mean (total) and estimate of standard error of the estimate of mean(total based upon a simple random sample with or without replacement, linear systematic sample, circular systematic sample, multiple start systematic sample ,stratified random sample, cluster sample, two stage sample. Estimated gain in efficiency due to stratification,

MODULE 1V: (Using R programming) Relative efficiency of cluster as a unit of sampling compared to an element as unit of sampling, Relative efficiency of two stage sampling and systematic sampling. Ratio and regression estimator of population mean based on a simple random sample without replacement.

MODULE V: (Using SPSS) Descriptive Statistics ; Compare means- one sample t- test, two sample test, independent sample t test ; chi-square test ; Correlation; Regression-simple and multiple.

MODULE VI: (Using SPSS) Equality of means of two multivariate normal vectors; Canonical correlation, Principal component analysis, Factor analysis, Cluster analysis.

SEMESTER	: III
COURSE CODE	: STA- CC-531
COURSE TITLE	: STOCHASTIC PROCESSES
CREDITS	:4

COURSE OUTCOMES

On completion of the course, students should be able to:

CO1. Describe and exemplify concepts of Stochastic processes, time space and state space, classification of stochastic processes based on the nature of time space and state space, Classical stochastic processes like processes with stationary independent increments, Markov process, renewal process, martingales, Wiener process, Gaussian process

CO2. Explain Markov chains: Definition, transition probability matrix, n-step transition

Probability and Chapman-Kolmogorov equation

CO3. Calculate n-step transition probabilities

CO4. Classify states of a finite Markov chain

CO5. Describe periodicity and ergodicity of chains.

CO6. Describe limiting behaviour of n-step transition probabilities,

CO9.Obtain the stationary distribution of a Markov chain

CO10. Describe random walks & gambler's ruin problem.

CO11. Explain and exemplify continuous time Markov chain, Poisson process, pure birth process, birth and death processes, compound Poisson process, Markov Process with discrete states.

CO12. Distinguish between strict and weak (covariance or wide sense) stationarity,

- CO 13. Explain and exemplify renewal processes, renewal equation.CO14. Describe and apply renewal theorem.CO15. Describe Branching processes, offspring distribution, extinction probabilities.

Sl. No:	Outcomes	Taxonomy
	On completion of each module, students should be able to:	Level
Module 1.	M01. Articulate and exemplify the concepts of Stochastic processes, time space and state space.	Understand
	M02. Construction of examples of Stochastic processes M03. Explain the concepts of particular types of stochastic	Understand
	processes like process with stationary independent increments,	Create
	Markov process, martingales, Wiener process, Gaussian process etc.	Apply
Module: 2	M01. Articulate concepts of Markov chains, transition probability matrix, n-step transition probabilities	Understand
	M02. Calculate n-step transition probabilities	Evaluation
	M03. Describe and exemplify classification of states in a Markov Chain	Understand
	M04. Calculate the periodicity of a Markov Chain	Evaluation
	M05. Explain the concepts of recurrence, ergodic chains	Understand
Module 3	M01. Explain and exemplify concepts of limiting behaviour of n- step transition probabilities.	Understand
	M02. Describe stationary distributions and solve problems	Apply
	M03. Describe various types of random walks	Understand
	M04. Explain a gambler's ruin problem	Understand
	M05. Derivation of the probability of ruin of a gambler's ruin problem	Evaluation
Module 4	M01. Describe and exemplify: Continuous time Markov chains,	Understand
	Poisson process, pure birth process, birth and death processes. MO2. Derive of steady state probabilities/differential difference equations in case of Poisson process, pure birth process, birth and death processes.	Evaluation
	M03. Describe and exemplify: Compound Poisson process,	Understand
	M04 Derive properties of Poisson process and Compound Poisson	Evaluation
	process M05. Explain the concept of Markov Process with discrete states.	Understand
Module 5	M06. Illustrate these processes with examples	Apply
would 5	M01. Distinguish between strict and weak (covariance or wide sense) stationarity	Analyse
	M02. Describe and exemplify: renewal processes, renewal equation.	Understand

	M03. Explain the statement and applications of renewal theorem M04. Solve problems based on the applications of renewal theorem	Apply Apply
Module 6	 M01. Describe and exemplify Galton-Watson branching processes M02. Explain concepts of offspring distribution and its implications M03. Interpret the concept of extinction probabilities M04. Compute the probability extinction in case of a particular offspring distribution. 	Understand Apply Apply Apply

MODULE I: Introduction to Stochastic processes, time and state space, classification of stochastic processes, processes with stationary independent increments, Markov process, renewal process, martingales, Wiener process, Gaussian process (definitions and examples).

MODULE II: Markov chains: Definition, transition probability matrix, n-step transition probability, Chapman-Kolmogorov equation, calculation of n-step transition probability and its limit, classification of states, periodicity, recurrence, ergodic chains,

MODULE III: limiting behaviour of n-step transition probabilities, stationary distributions, random walk & gambler's ruin problem.

MODULE IV: Continuous time Markov chains, Poisson process, pure birth process, birth and death processes, compound Poisson process, Markov Process with discrete states.

MODULE V: Stationary processes, strict and weak (covariance or wide sense) stationarity, renewal processes, renewal equation, statement and applications of renewal theorem.

MODULE VI: Branching process: Galton-Watson branching processes, offspring distribution, extinction probabilities.

REFERENCES

- Bartlett, M.S. (1955): An Introduction to Stochastic Processes (with special reference to application and methods), Cambridge.
- Bhat, U.N. and Miller, G.K. (2002): Elements of Applied Stochastic Processes. 3rd Edn., John Wiley, New York.
- Feller, W. (1968): Introduction to Probability Theory and its Applications, Vols. I & II, John Wiley, New York.
- Karlin, S. (1972): A First Course in Stochastic Processes, Academic Press, New York.
- Parzen, E. (1962): Stochastic Processes, Holden-Day Inc, San Francisco.

• Srinivasan, S.K. and Mehata, K.M. (1976): Stochastic Processes, Tata McGraw-Hill Publishing Company Limited, New Delhi.

SEMESTER	: III
COURSE CODE	: STA-CC-532
COURSE TITLE	: ESTIMATION
CREDITS	:4

COURSE OUTCOMES

On completion of this course, the students will be able to:

- C01:List the important properties of estimators of an unknown parameter of a distribution
- C02:Derive the UMVUE of a parameter or function of a parameter
- C03:Apply the concept of Rao-Blackwell and Lehmann-Scheffe theorems
- C04:Able to select the best estimators using different properties
- C05: Differentiate between classical and Bayesian inference
- C06: Determine the estimators of unknown parameters using methods like MLE, Method of moments etc.
- C07: Differentiate between location and scale family of distributions
- C08:Outline Bayes estimation of parameters of standard distributions

Sl.No.	Outcomes	Taxonomy level
	On Completion of each module, Students should be able to:	
Module 1.	M01. Derive the important properties of estimators	Create
	M02.Determine the sufficient statistic using NP lemma	Evaluate
	M03.Explain minimal sufficiency	Understand
	M04.Define Basu's Theorem	Remember
	M05.Use likelihood equivalence to obtain minimal sufficient	Apply
	statistic	
Module.2	M01. Develop a characterization theorem for finding UMVUE	Create
	M02. Apply Rao-Blackwell and Lehmann-Scheffe theorems to	Apply
	find UMVUE	
	M03. Determine UMVUE estimator of any parametric function	Apply
Module.3	M01. Derive Fisher information measure	Create
	M02. Calculate Cramer-Rao inequality, Chapman -Robbin's	Apply
	bound, Bhattacharya bounds.	

	M03. Identify Efficient estimators	Remember
	M04. Evaluate Consistent estimators	Evaluate
Module 4	M01. Describe different methods of estimation such as method	Understand
	of moments, MLE, Minimum chi-square, Least square	
	estimation etc.	
	M02. Derive properties of the estimators	Create
Module 5	M01. Formulate location and scale family of distributions	Create
	M02. Evaluate Location and scale invariant estimators	Evaluate
	M03. Calculate Pitman estimators of location and scale Apply	
	parameters	
	M04. Discuss BLUE for location and scale distributions.	Understand
Module 6	M01. Design basic elements of Bayesian Inference	Create
	M02. Define Bayes Theorem	Remember
	M03.Calulate Bayes estimators of parameters of standard	Apply
	distributions.	
	M04.Differentiate between classical and Bayesian Inference	Analyze

MODULE I: Point estimation, Sufficiency and minimal sufficiency, Neyman-Pearson factorization theorem, Exponential family of distributions, Pitman family, Likelihood equivalence, Unbiased estimation; Completeness, Basu's Theorem.

MODULE II: UMVUE estimators and their characterizations, Methods of finding UMVUE, Rao-Blackwell and Lehmann-Scheffe theorems, UMVUE estimation of parametric function from standard distributions.

MODULE III: Fisher information measure and its properties, Lower bound to the variance of an unbiased estimates, Cramer-Rao inequality. Chapman -Robbin's bound, Bhattacharya bounds, Efficiency, Consistency.

MODULE IV: Methods of estimation: Method of moments, Maximum likelihood estimators and their properties, Minimum chi-square and its modification, Least square estimation.

MODULE V: Location and scale family of distributions, Location and scale invariant estimators, Pitman estimators of location and scale parameters. BLUE for location and scale distributions.

MODULE VI: Basic elements of Bayesian Inference, Loss function, Bayes risk, Prior distribution, Bayes Theorem, Posterior distributions, Bayes estimation of parameters of standard distributions.

REFERENCES

- Hogg, R. V. and Craig, A. T. (1989): Introduction to Mathematical Statistics, Macmillan Publishing Company.
- Kale, B. K. (1999): A First Course on Parametric Inference, Narosa Publishing House.
- Kendall, M.G. and Stuart, A. (1967): The Advanced Theory of Statistics, Vol. II, 2nd Edition, Charles Griffin & Company Ltd., London.
- Lehmann, E. L. (1983): Theory of Point Estimation, John Wiley, New York.
- Mood, A. M., Graybill, F. A. and Boes, D. C.(1972): Introduction to the Theory of Statistics, 3rd Edition, Mc-Graw Hill International, New York.
- Mood, A. M., Graybill, F. A. and Boes, D. C.(1972): Introduction to the Theory of Statistics, 3rd Edition, Mc-Graw Hill International, New York.
- Rajagopalan M. and Dhanavanthan, P. (2012) Statistical Inference, PHI Learning Private Limited, New Delhi.
- Rohatgi, V. K. (1990): An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern Limited.
- Wasan, M. T. (1970): Parametric Estimation, Mc-Graw Hill, New York.

SEMESTER	: III
COURSE CODE	: STA-CC-533
COURSE TITLE	: TESTING OF HYPOTHESES
CREDITS	:4

COURSE OUTCOME

On completion of the course, students should be able to:

- CO 1: Formulate hypothesis for a given problem
- CO2: Find critical region and power of the test
- CO3: Find most powerful test for testing simple hypothesis against simple alternative
- CO4: State and prove Neyman-Pearson lemma
- CO5: Find UMP test for testing composite hypothesis
- CO6: Obtain LMP and LMPU test
- CO7: Derive likelihood ratio test for testing the hypothesis for normal populations
- CO8: Obtain sequential probability ratio test for testing the hypothesis.
- CO9: Construct confidence interval for parameters
- CO10: Construct UMA and UMAU confidence sets

MODULE	Module outcomes	Taxonomy
	On completion of each module, students should be able to:	Level
MODULE 1	MO1: Identify simple and composite hypothesis	Understand
	MO2: Find critical region, size and power of the test	Evaluate
	MO3: Distinguish between random and non-randomized test	Apply
MODULE 1I	MO1: Apply Neymann-Pearson lemma to find most powerful test	Apply
	MO2: Check the unbiasedness of a test	Apply
	MO3: Find UMP and UMPU test	Apply
MODULE III	MO1: Obtain Locally Most Powerful test	Apply
	MO2: Obtain Locally Most Powerful Unbiased test	Apply
	MO3: Define general linear hypothesis	Remember
MODULE IV	MO1: Apply likelihood ratio test principle for testing the mean for a normal population.	Apply
	MO2: Apply likelihood ratio test principle for testing the equality of means for two normal population	Apply
	MO3: Test the variance of normal population.	Apply
	MO4: Test the equality of means of two normal populations	Apply
MODULE V	MO1: Derive SPRT for test the parameters of normal distribution, binomial and Poisson distributions	Apply
	MO2: Find OC function and Average sample Number of a SPRT	Remember
MODULE VI	MO1: Construct shortest level confidence interval for parmeters	Evaluate
	MO2: Obtain confidence interval using pivot MO3: Use UMP and UMPU test to construct UMA and	Apply Apply
	UMAU confidence sets	

MODULE I: Basics of Testing of hypothesis, simple hypotheses and composite hypotheses, critical regions and test functions, randomized and nonrandomized tests,

MODULE II: Neyman-Pearson lemma and its applications, most powerful tests, UMP tests, Unbiasedness, UMPU

MODULE III: LMP, LMPU, tests of hypotheses concerning a real parameter, similar regions, Introduction to general linear hypotheses.

MODULE IV: Likelihood ratio tests, asymptotic properties, tests concerning normal distribution (one sample and two samples) and binomial distribution.

MODULE V: Sequential procedures, SPRT-Wald's identity- OC and ASN functions, applications to Binomial, Poisson and Normal distributions

MODULE VI: Confidence sets, shortest confidence intervals, construction of confidence interval using pivots, most accurate-UMA, UMAU confidence sets-relation to tests of hypotheses, interval estimation.

REFERENCES

- Ferguson, T. S. (1967): Mathematical Statistics, Academic Press, New York.
- Kendall, M.C, and Stuart. A, (1967): The Advanced Theory of Statistics, Vol 2, IV Edn., Mc Millan, New York.
- Lehmann, E. L. (1986): Testing of Statistical Hypothesis, John Wiley & Sons.
- Wald, A.(1977): Sequential Analysis, Dover Publications Inc., New York.
- Wetherill, G. B. (1966): Sequential Methods in Statistics, Methuen & Co. Ltd. New Delhi.

SEMESTER	: III
COURSE CODE	: STA-DE-534(i)
COURSE TITLE	: STATISTICAL QUALITY CONTROL AND RELIABILITY
	MODELING
CREDITS	:4

COURSE OUTCOMES

On completion of the course, students should be able to:

- CO1. Understand the concept of quality control statistical process control.
- CO2. Measure the performance of a process.
- CO3. Identify assignable causes.
- CO4. Define reliability including the different types and how they assessed.
- CO5. Ensure the validity and precision of statistical analysis.

CO6. Explains reliability in discrete set up.

MODULE OUTCOMES

Sl. No:	Outcomes	Taxonomy level
	On completion of each module, students should be able	
	to:	
Module 1	M01. Explain statistical process control	Understand
	M02. Describe various control charts	Evaluate
Module 2	M01. Describe different sampling inspection techniques	Evaluate
	M02. Explains six-sigma concepts	Understand
	M03. Distinguish chain sampling and continuous sampling	Remember
Module 3	M01. Explain basic concepts of reliability	Understand
	M02. Describe reliability of a coherent system	Remember
	M03. Describe several measures of reliability	Remember
	M04. Calculate measures of reliability based on several	Analysis
	distributions	
Module 4	M01. Explain reliability in discrete set up	Understand
	M02. Derive expression of the relation connecting various	Evaluate
	measures of reliability	
Module 5	M01. Explain inference in reliability models	Understand
	M02. Describe estimation of parameters based on censored	Apply
	sampling	
	MO3. Solve problems related to estimation of parameters	Apply
	based on censored sampling	

COURSE CONTENT

MODULE I: Statistical process control, Theory of control charts – Shewart control charts for variables- X, R,S charts, Attribute control charts - np, p, c and u charts – OC, ARL & process capability of control charts, CUSUM charts, Acceptance sampling for attributes and variables. **MODULE II:** Sampling inspection techniques: Single, double and multistage sampling plans and their properties, Chain sampling, Continuous sampling, Taguchi method, Total quality management, ISO standardization, ISO 9001, six sigma concepts.

MODULE III: Basic reliability concepts: Reliability concepts and measures, Components and systems, coherent systems, reliability of coherent systems, cuts and paths, series and parallel system, k-out-of-n systems, Bounds on System Reliability. Failure rate, mean residual life, Mean time to failure in the univariate cases, Exponential, Weibull, Pareto, Inverse Gaussian and

Gamma as life distribution models, Characterization of life distribution based on failure rate and mean residual life function.

MODULE IV: Reliability concepts in discrete set up, Notion of ageing based on failure rate and mean residual life, NBU, NBUE, HNBUE classes and their duals, Interrelationships.

MODULE V: Inference in reliability models: Estimation of parameters based on complete and censored samples in exponential, Weibull and Gamma models. Non-parametric estimation of failure rate and reliability function.

REFERENCES

- Barlow, R.E. and Proschan, F. (1985): Statistical Theory of Reliability and Life Testing, Holt, Rinehart and Winston.
- Cox, D.R. and Oakes, D. (1984): Analysis of Survival Data, Chappman Hall.
- Duncan, A. J. (1959): Quality Control and Industrial Statistics (5th edition), Irwin, Homewood I.
- Galambos, J. and Kotz, S. (1978) Characterization of Probability Distributions.
- Klefjo, B. (1982) The HNBUE and HNWUE Classes of Life distributions, Naval Research Logistic Quarterly, 29, 331-344.
- Lawless, J. F. (2003): Statistical Models and Methods for Lifetime Data, John Wiley.
- Montgomery, D.C. (2005): Introduction to Statistical Quality Control, 5th edition, John Wiley.
- Nelson, W. (1982): Applied life data analysis, Wiley.
- 9. Sinha, S. K. (1986) Reliability and Life Testing, Wiley.

SEMESTER	: III
COURSE CODE	: STA-DE-534(ii)
COURSE TITLE	: ADVANCED PROBABILITY THEORY
CREDITS	:4

COURSE OUTCOMES

On completion of the course, students should be able to:

CO1. Identify the concept of probability through Kolmogorov's Axiom.

CO2. Explain the concept of probability density function and cumulative distribution function.

CO3. Explain the concept random vectors and random variables.

CO4. Apply central limit theorem and articulate the problems related to central limit theorem.

CO5. Apply central results in probability theory on typical problems within the fields.

MODULE OUTCOMES

Sl. No:	Outcomes	Taxonomy level
	On completion of each module, students should be able	
	to:	
Module 1	M01. Explain and exemplify the concept of random	Understand
	vectors and infinite dimensional random variables.	
	M02. State and explain consistency theorem.	Remember
	M03. State and prove Kolmogorov 0-1 law.	Remember
Module 2	M01. Explain convolution semigroup.	Understand
	M02. Describe the representation of the infinitesimal	Evaluate
	generators.	
Module 3	M01. Describe divisible distribution and elementary	Apply
	properties.	
	M02. Explain canonical representations.	Understand
	M03. Describe convolution semigroups and infinitely divisible	Analysis
	distribution.	
Module 4	M01. State and explain general central limit theorem.	Remember
	M02. Apply central limit theorem and solve problems related	Apply
	to it.	
Module 5	M01. Explains distribution of class L	Understand
	M02. Distinguish extreme value distributions and stable	Evaluate
	distributions.	
	M02. Establish domain of attraction.	Apply

COURSE CONTENT

MODULE I: Random Vectors, Infinite dimensional random variables, consistency theorem, Tail events, Tail fields, tail –functions, Kolmogorov 0-1 law, Exchangeability, Hawitt-Savage 0-1 law, Centering and truncation.

MODULE II: Convolution semi-group, probability operators, representation of the infinitesimal generators.

MODULE III: Infinitely divisible distribution, elementary properties, Canonical representations, Convolution semi groups and infinitely divisible distributions.

MODULE IV: The general central limit problem, normal, degenerate and Poisson convergence.

MODULE V: Distributions of class L, Stable distributions, Domain of Attraction. Extreme value Distributions.

REFERENCES

- Laha, R. G. and Rohatgi, V. K. (1979): Probability Theory, John Wiley & Sons, New York.
- Feller, W. (1968) : An Introduction to Probability Theory and Its Applications, Vol 1, John Wiley, New York.
- Feller, W. (1971): An Introduction to Probability Theory and Its Applications, Vol. 2, John Wiley, New York.
- Fisz, M. (1963): Probability Theory and Mathematical Statistics, John Wiley, New York.

SEMESTER	: III
COURSE CODE	: STA-DE-534(iii)
COURSE TITLE	: DATA MINING
CREDITS	:4

COURSE OUTCOMES

On completion of the course, students should be able to:

CO1. Able to learn the concept of data base technology which has led to the need for data mining and its applications

CO2. Examine the types of data to be mined and present a general classification of task to integrate data mining system.

CO3. Evaluate and select appropriate data mining algorithms and apply, interpret and report the output appropriately.

CO4. Apply statistical methods for any given raw data.

MODULE OUTCOMES

Sl. No:	Outcomes	Taxonomy level
	On completion of each module, students should be able	
	to:	
Module 1	M01. Explain classification methods for data	Understand
	M02. Establish decision trees	Apply
Module 2	M01. Distinguish clustering from statistical and data mining	Understand
	M02. Explain vector quantization	Analysis
Module 3	M01. Explain dimension reduction	Remember
	M02. Analyze unsupervised learning from univariate and	Analysis
	multivariate data	
Module 4	M01. Explain supervised learning from moderate to high	Understand
	dimensional input spaces	
	M02. Analyze regression trees	Evaluate
Module 5	M01. Explain simple relation data bases	Understand
	M02. Analyze online analytical data processing	Evaluate
	M03. Establish the applications to electronic commerce	Apply

COURSE CONTENT

MODULE I: Review of classification methods from multivariate analysis; classification and decision trees.

MODULE II: Clustering methods from both statistical and data mining viewpoints; vector quantization.

MODULE III: Unsupervised learning from univariate and multivariate data; dimension reduction and feature selection.

MODULE IV: Supervised learning from moderate to high dimensional input spaces; artificial neural networks and extensions of regression models, regression trees.

MODULE V: Introduction to databases, including simple relational databases; data warehouses and introduction to online analytical data processing. Association rules and prediction; data attributes, applications to electronic commerce.

REFERENCES

- Berson, A. and Smith, S.J. (1997): Data Warehousing, Data Mining, and OLAP. McGraw-Hill.
- Breiman, L. Friedman, J.H. Olshen, R.A. and Stone, C.J. (1984): Classification and Regression Trees. Wadsworth and Brooks/Cole.
- Han, J. and Kamber, M. (2000): Data Mining; Concepts and Techniques. Morgan Gaufmann.
- Mitchell, T.M. (1997): Machine Learning. McGraw-Hill.
- Ripley, B.D. (1996): Pattern Recognition and Neural Networks. Cambridge University Press.

SEMESTER	: IV
COURSE CODE	: STA-CC-541
COURSE TITLE	: NONPARAMETRIC METHODS
CREDITS	:4

After completion of this course the students will be able to

COURSE OUTCOMES

- C01.Find joint, marginal and conditional probability distributions of order statistics in the continuous and discrete cases.
- C02. Find the distribution of sample range and other systematic statistics in case of sampling from an arbitrary continuous population and, in particular, from some specific continuous distributions such as uniform and exponential.
- C03. Understand the Markov Chain property of order statistics
- C0 4. Derive the recurrence relations and identities for moments of order statistics drawn from an arbitrary population (discrete or continuous), as well as from some specific distributions.
- C05 learn about the large sample approximations to the mean and variance of order statistics as well as the asymptotic distributions of order statistics.
- C06.Find the distributions of order statistics for independently and not identically distributed variates and also for dependent variates.
- C07. Solve hypothesis testing problems where the conditions for the traditional parametric inferential tools to be applied are not fulfilled.

MODULE OUTCOMES

Sl.No.	Outcomes	Taxonomy level
	On Completion of each module, Students should be able to:	j
Module 1.	M01.Explain the distribution and density functions of single order statistics	Understanding
	M02.Solves the Joint distribution and density functions of two order statistics.	Applying
	M03. Evaluates the conditional distribution theory of order statistics.	Evaluate
	M04. Composes the distributions of some well-known statistics - sample median and sample range	Create
	M05.Oultines the Markov property of order statistics.	Remembering
Module.2	M01.Demonstartes single moments and product moments of order statistics.	Applying
	M02. Evaluates the recurrence relations on the moments and product moments of order statistics	Evaluating
	M03. Designs exponential order statistics and uniform order statistics.	Creating
Module.3	M01. Computes estimates of location and scale parameters of a distribution by order statistic	Applying
	M02. Constructs the estimates of location and scale parameters of a symmetric distribution by order statistic.	Applying
	M03.Produces the estimates of the scale parameters of a distribution belonging to the scale family of distribution.	Applying
	M04. Creates the Gupta's simplified linear estimates of location and (or) scale parameters of a distribution by order statistics.	Creating
Module 4	M01. Define U statistic, Variance and asymptotic variance of U statistic.	Remembering
	M02.Constructs one sample U-statistic theorem with proof, M03. Explain the Definition and examples of two sample U- statistics, variance of two sample U-statistic.	Applying Understanding
	M04. Outlines the Two sample U-statistic theorem	Remembering
	M05. Generates the Mann-Whitney U-statistic and its variance.	Creating
	M06. Writes the Test based on Mann-Whiteny Statistics.	Creating
Module 5	M01.Identifies the appropriate Nonparametric tests – Kolmogorov- Smirnov one sample and two sample tests,Sign test, Wilcoxon signed rank test, run test. Median test.	Analyzing
	M02. Explains the Kruskal-Wallis one-way analysis of variance by ranks, Friedman two way analysis of variance by ranks.	Evaluating
	M03. Illustrates Kendall's rank order correlation coefficient and Kendall's coefficient of concordance as measure of association.	Analyzing

Module 6	M01. States the Asymptotic Relative Efficiency (ARE) of tests.	Remembering
	M02.Summarizes Pitman's ARE.	Understanding
	M03.Concludes the Statement and applications of Noether's	Evaluating
	theorem.	
	M04. Summarizes the Efficacy And ARE of one sample t test, sign test and Wilcoxon signed rank sum test.	Creating

MODULE I: Order statistics, Distribution and density functions of order statistics, Joint distribution and density functions of two order statistics, Conditional distribution theory of order statistics, Distributions of some well-known statistics - sample median and sample range, Markov property of order statistics.

MODULE II: Single moments and product moments of order statistics, Recurrence relations on the moments and product moments of order statistics, Exponential order statistics, Uniform order statistics.

MODULE III: Application of order statistics in estimation- Estimation of location and scale parameters of a distribution by order statistic, Estimation of location and scale parameters of a symmetric distribution by order statistic. Estimation of the scale parameters of a distribution belonging to the scale family of distribution, Gupta's simplified linear estimation of location and (or) scale parameters of a distribution by order statistics.

MODULE IV: U-statistics: Definition and examples, Variance and asymptotic variance of Ustatistic, Some properties of kernels, One sample U-statistic theorem with proof, Definition and examples of two sample U-statistics, variance of two sample U-statistic, Two sample U-statistic theorem (Statement Only), Mann-Whitney U-statistic and its variance. Test based on Mann-Whiteny Statistics.

MODULE V: Nonparametric tests –Kolmogorov- Smirnov one sample and two sample tests, Sign test, Wilcoxon signed rank test, run test. Median test. Kruskal-Wallis one-way analysis of variance by ranks, Friedman two way analysis of variance by ranks. Kendall's rank order correlation coefficient and Kendall's coefficient of concordance as measure of association.

MODULE VI: Asymptotic Relative Efficiency (ARE) of tests. Pitman's ARE. Statement and applications of Noether's theorem. Efficacy of one sample t test, sign test and Wilcoxon signed rank sum test. ARE of these tests.

REFERENCES

- David, H.A. and Nagaraja, H.N. (2003): Order Statistics, 3rd Edn. Wiley, New York.
- Prakasa Rao, B.L.S. (1983): Nonparametric Functional Estimation, Academic Press.
- Randles, R.H. and Wolfe, D.A. (1979): Introduction to the Theory of Nonparametric Statistics, Wiley, New York.
- Serfling, R.J. (1980): Approximation Theorems of Mathematical Statistics, Wiley, New York.
- Siegel, S. and Castellan Jr. N. J. (1988): Non-parametric Statistics for the Behavioral Sciences. McGraw Hill, New York.

SEMESTER	: IV
COURSE CODE	: STA-CC-542
COURSE TITLE	: DESIGN AND ANALYSIS OF EXPERIMENTS
CREDITS	:4

COURSE OUTCOME

On completion of the course, students should be able to:

- CO 1: Define linear parametric function and describe its properties
- CO2: State Gauss-Markov theorem and its applications.
- CO4: Perform Analysis of variances
- CO3: Describe block designs and its properties
- CO5: Design and analyse of block designs.
- CO6: Design and analyse factorial experiments
- CO7: Apply principle of total and partial confounding in factorial experiments
- CO8: construct and analyse incomplete block design
- CO10: Perform analysis of covariance.
- CO11: Perform missing plot and mixed-up plots analysis

MODULE OUTCOME

MODULE	Module outcomes	Taxonomy
	On completion of each module, students should be able to:	Level
MODULE 1	MO1: Identify estimability of a linear parametric function	Understand
	MO2: Apply Gauss-Markov theorem for finding BLUE of a parametric function.	Apply
	1	Understand
	MO4: Perform one way and two analysis of varaince Analy	
MODULE 1I	MO1: Identify connected, balance and orthogonal designs	Understand

	MO2: Design and analysis of CRD, RBD, LSD and GLSD	Analysis
MODULE III	MO1: Design and analyse of 2^2 , 3^n and p^n factorial experiments	Analysis
	MO2: Apply principle of total and partial confounding in	Apply
	factorial experiments	
MODULE IV	MO1 : Analyze BIBD with inter and intra block informations	Apply
	MO2: Analyse PBIBD with only two associates classes	Apply
MODULE V	MO1:AnalysesSplit-plot and split-split plot designs	Apply
	MO2: Formulate the model for one way and two way analysis of covariance	Apply
	MO3: Perform one way and two way analysis of covariance	Apply
MODULE VI	MO1:Perform Missing plot analysis in RBD and LSD	Apply
	MO3: Perform mixed-up plot analysis in RBD and LSD	Analysis
	MO2: Estimate missing yields in split plot and BIBD	Evaluate

MODULE I: General linear models, estimability of linear parametric functions, Gauss-Markov theorem, tests of linear hypothesis, information matrix of block designs, criteria for connectedness, balance and orthogonality.

MODULE II: Randomization, replication and local control, one-way classification, two-way classification with equal and unequal number of observations per cell. Standard designs: CRD, RBD, LSD, GLSD. Efficiency of design and comparison.

MODULE III: Factorial designs: Statistical analysis of symmetrical factorial designs. Total and partial confounding in 2^n , 3^n and p^n experiments. Concepts of fractional replication.

MODULE IV: Incomplete block design, BIBD, analysis with recovery of inter block information and intra block information, PBIBD and analysis of PBIBD with only two associates classes.

MODULE V: Split-plot and split-split plot designs. Strip-plot design. Analysis of covariance technique in standard designs.

MODULE VI: Missing and mixed plot analysis in RBD, LSD. Estimation of missing yields in split plot design and BIBD.

REFERENCES

- Aloke Day (1986). Theoryof Block Designs .Wiley Eastern, New Delhi.
- Chakrabarti,M.C.(1962) : Mathematics of Design and Analysis of Experiments , Asia Publishing House, Bombay.

- Das, M. N. and Giri, N. (1979). Design and Analysis of Experiments. Wiley Eastern Limited, New Delhi.
- John, P.W.M. (1971). Statistical Design and Analysis of Experiments, Macmillan.
- Joshi, D. D. (1987): Linear Estimation and Design of Experiments, Wiley Eastern, Wiley Eastern Limited, New Delhi.
- Montgomery, C.D. (1976): Design and Analysis of Experiments, John Wiley, New York.

SEMESTER	: IV
COURSE CODE	: STA-CC-543
COURSE TITLE	: PRATICAL 2
CREDITS	:2

COURSE OUTCOMES

After completion of this course the students will be able to

- C01.Formulate and evaluate different estimators for unknown parameters using the real life data set using R programming language
- C02.Choose an appropriate UMP test for a real life data set using R programming language
- C03.Classify the different control charts for industrial data set using R programming language

C04.Perform the appropriate nonparametric tests for a data set using R programming language

- C05.Summarize different design of experiments for a statistical experimental data using R programming language
- C06. Recognize different nonparametric tests such as ANOVA, RBD etc. For statistical experimental data using R programming language.

MODULE OUTCOMES

Sl.No.	Outcomes	Taxonomy level
	On Completion of each module, Students should be able to:	
Module 1.	M01. Justify different estimation techniques – Maximum	Evaluate
	likelihood estimation, Uniformly minimum variance	
	unbiased estimate, method of moments, method of	
	minimum chi-square using the R software.	
Module.2	M02. Develop different Testing of hypothesis procedures such	
	as Most powerful test, Uniformly most powerful test,	Create
	Uniformly most powerful unbiased test, Locally most	
	powerful test, Likelihood ratio tests, Sequential	
	probability ratio test using the R software.	

Module.3	M01. Illustrate different control charts such as Shewart control charts for variables- <i>X</i> , R, S charts,Attribute control charts - np, p, c and u charts using the R software.	Analyze
	M02. Formulate estimation of parameters based on complete and censored samples in exponential, Weibull and Gamma models using the R software.	Create
	M03. Perform Nonparametric estimation of failure rate and reliability function using the R software.	Apply
Module 4	M01.Demonstrate different nonparametric tests such as Sign test, Wilcoxon signed rank test, run test, Median test. Kendall's rank order correlation coefficient and Kendall's coefficient of concordance as measure of association. Test based on Mann-Whitney Statistics. Friedman two way analysis of variance by ranks using the R software	Apply
Module 5	MO1. Formulate different experimental techniques such as LSD, ANCOVA, Factorial experiments. Missing and Mixed-up plot in RBD using the R software	Create
Module 6	M01. Demonstrate different tests procedures such as One way ANOVA, Two way ANOVA- multiple but equal, multiple but unequal, RBD, Kruskal-Wallis one-way analysis of variance by ranks, Kolmogorov- Smirnov one sample and two sample tests using SPSS software	Apply

MODULE I: (Using R) Estimation – Maximum likelihood estimation, Uniformly minimum variance unbiased estimate, method of moments, method of minimum chi-square.

MODULE II: (Using R) Testing of hypothesis – Most powerful test, Uniformly most powerful test, Uniformly most powerful unbiased test, Locally most powerful test, Likelihood ratio tests, Sequential probability ratio test.

MODULE III: (Using R) Control charts – Shewart control charts for variables- X, R, S charts, Attribute control charts - np, p, c and u charts. Reliability- series and parallel system, k-out-of-n systems, Survival function, Hazard function, Mean residual life function in the univariate cases, Exponential, Weibull, Pareto and Gamma as life distribution models, Estimation of parameters based on complete and censored samples in exponential, Weibull and Gamma models, Non-parametric estimation of failure rate and reliability function.

MODULE IV: (Using R) Nonparametric tests – Sign test, Wilcoxon signed rank test, run test., Median test. Kendall's rank order correlation coefficient and Kendall's coefficient of

concordance as measure of association. Test based on Mann-Whitney Statistics. Friedman two way analysis of variance by ranks.

MODULE V: (Using R) LSD, ANCOVA, Factorial experiments. Missing and Mixed-up plot in RBD.

MODULE VI: (Using SPSS) One way ANOVA, Two way ANOVA- multiple but equal, multiple but unequal, RBD, Kruskal-Wallis one-way analysis of variance by ranks, Kolmogorov-Smirnov one sample and two sample tests.

SEMESTER	: IV
COURSE CODE	: STA-DE-544(i)
COURSE TITLE	: OPERATIONS RESEARCH
CREDITS	:4

COURSE OUTCOMES

On completion of the course, the students should be able to:

- CO1. Describe Simplex method to solve the linear programming problem.
- CO2. Explain the steps in solving a linear programming problem by two-phase method.
- CO3. Explain the concept of duality in linear programming problem.
- CO4. Give the outline of dual simplex method.
- CO5. Describe the computational procedure of optimality test in a transportation table.
- CO6. Explain the Hungarian method to solve the Assignment problem.
- CO7. To understand basic structure of quadratic programming problem.
- CO8. Give an account of different types of inventory models and inventory cost.
- CO9. Derive an EOQ formula for different rate of demand in different cycles.
- CO10. Formulate and solve the purchase inventory problem with one price break.
- CO11. Derive the steady state solution of M/M/1 queue model.
- CO12. Obtain expected number of units in the M/G/1 queueing system under steady state .
- CO13. Derive an expression of the average annual cost of an item over a period of n years.
- CO14. Describe Bellmen's principle of optimality.

MODULE OUTCOMES

Sl. No:	Outcomes	Taxonomy
	On completion of each module, students should be able to:	Level

Module 1.	M01. Explain the concepts of linear programming problem.	Understand
	M02. Solve the linear programming problem by using Simplex method.	Apply
	M03. Computational steps of Big-m-Method	Remember
	M04. Write the dual of the given linear programming problem.	Evaluate
Module: 2	M01. Find the initial basic feasible solution to the given Transportation problem.	Evaluate
	M02. To determine the optimum assignment problem.	Evaluate
	M03. State and prove Kuhn-Tucker necessary and sufficient conditions in a non-linear programming problem.	Remember
	M04. Describe briefly the Beal's method for solving quadratic programming problem.	Remember
Module 3	M01. Explain with examples the probabilistic models in inventory.	Understand
	M02. Derive an expression for EOQ for Harri's or Wilson model.	Understand
	M03. Discuss the purchase inventory model with three price break.	Remember
Module 4	M01. State some of the important distributions of arrival interval and service time.	Remember
	M02. To evaluate expected value of queue length in various models.	Evaluate
	M03. Obtain the differential difference for M/M/1 queue model.	Understand
Module 5	M01. Describe the problem of replacement of items whose maintains cost increase with time.	Understand
	M02. Solve Dynamic programming problem by using Linear programming problem.	Apply

MODULE I: Linear Programming: Convex sets and associated theorems, Graphical method, Computational aspects of simplex method, Duality problems of linear programming, Degeneracy and its solution, Two phase simplex method.

MODULE II: Transportation problems: Finding initial basic feasible solution, Optimality test, Degeneracy, Assignment problem, Hungarian method, Non-linear programming, Kuhn-Tucker theory for convex programming problem, Quadratic programming problem and its solution.

MODULE III: Inventory models: Deterministic models, Single item static models, models with price breaks and storage limitation, probabilistic models with single period and multi periods.

MODULE IV: Queuing theory: Basic structure, Role of the Poisson and exponential distributions.

M|M|1, M|M|C, M|Ek|1 and M|G|1 queues and their properties. Waiting time distributions, Steady state solution.

MODULE V: Replacement problem: Replacement of items that deteriorate with time and money value change (i) change with time (ii) does not change with time, Individual replacement policy, Group replacement policy, Sequencing problem, Dynamic programming problem, Recursive approach.

REFERENCES

- Gass, S.I. (1969): Linear Programming Problem, Mc Graw Hill.
- Gross, D. and Harris, C.M. (1974): Fundamental of Queuing Theory, John Wiley.
- Hillier, F.S. and Leiberman, G.J. (1962): Introduction to Operations Research, Holden Day.
- Kanti Swarup, Manmohan and Gupta, M.M. (1985): Operations Research, Sultan Chand & Sons.
- Mittal, K.V. (1990): Optimization Methods.
- Ravindran, A, Philips, D.T. and Soleberg, J.J. (1997): Operations Research Principles and Practise.
- Saaty, T.L. (1961): Elements of Queuing Theory with Applications, Mc Graw Hill.
- Taha, H.A. (1997): Operations Research, Mc.Millian.

SEMESTER	: IV
COURSE CODE	: STA-DE-544(ii)
COURSE TITLE	: BAYESIAN INFERENCE
CREDITS	:4

COURSE OUTCOMES

On completion of the course, students should be able to:

- CO1. Use relative frequencies to estimate probabilities.
- CO2. Calculate conditional probabilities
- CO3. Calculate posterior probabilities using Bayes' theorem.
- CO4. Calculate simple likelihood functions

CO5. Describe the role of the posterior distribution, the likelihood function and the posterior distribution in Bayesian inference about a parameter.

MODULE OUTCOMES

Sl. No:	Outcomes	Taxonomy level
	On completion of each module, students should be able	
	to:	
Module 1	M01. Explain prior distribution	Understand
	M02. Interpret Bayes theorem and articulate to find posterior distribution.	Apply
Module 2	M01. Find conjugate family of prior for a model	Evaluate
	M02. Choose appropriate member of conjugate prior for a	Apply
	family	
	MO3. Explain non-informative, improper and invariant priors	Understand
	MO4. Define Jeffrey's invariant prior	Understand
Module 3	MO1. Explain different types of loss function.	Understand
	MO2. Evaluate the estimate in terms of posterior risk	Evaluate
Module 4	MO1. Explain Bayesian interval estimation	Understand
	MO2. Explain highest posterior density regions	Understand
	MO3. Interpret confidence coefficient of an interval and its	Apply
	comparison with the interpretation of the confidence coefficient for a classical confidence interval	
Module 5	M01. Explain testing of hypothesis in Bayesian analysis	Understand
	M02. Distinguish prior and posterior odds.	Remember
	M02. Establish Lindley's Paradox for testing a point hypothesis for normal mean against the two-sided alternative hypothesis.	Remember

COURSE CONTENT

MODULE I: Subjective interpretation of probability in terms of fair odds. Evaluation of (i) subjective probability of an event using a subjectively unbiased coin (ii) subjective prior distribution of a parameter. Bayes theorem and computation of the posterior distribution.

MODULE II: Natural Conjugate family of priors for a model. Hyper parameters of a prior from conjugate family. Conjugate families for (i) exponential family models, (ii) models admitting sufficient statistics of fixed dimension. Enlarging the natural conjugate family by (i) enlarging hyper parameter space (ii) mixtures from conjugate family, choosing an appropriate member of conjugate prior family. Non-informative, improper and invariant priors. Jeffrey's invariant prior.

MODULE III: Bayesian point estimation: as a prediction problem from posterior distribution.

Bayes estimators for (i) absolute error loss (ii) squared error loss (iii) 0 - 1 loss. Generalization to convex loss functions. Evaluation of the estimate in terms of the posterior risk.

MODULE IV: Bayesian interval estimation: Credible intervals. Highest posterior density regions.

Interpretation of the confidence coefficient of an interval and its comparison with the interpretation of the confidence coefficient for a classical confidence interval.

MODULE V: Bayesian testing of Hypothesis: Specification of the appropriate form of the prior distribution for a Bayesian testing of hypothesis problem. Prior odds, Posterior odds, Bayes factor for various types of testing hypothesis problems depending upon whether the null hypothesis and the alternative hypothesis are simple or composite. Specification of the Bayes tests in the above cases. Discussion of Lindley's paradox for testing a point hypothesis for normal mean against the two-sided alternative hypothesis.

REFERENCES

- Berger, J. O. (1980): Statistical Decision Theory and Bayesian Analysis, Springer Verlag.
- Bernando, J. M. and Smith, A. F. M. (1994): Bayesian Theory, Jolm Wiley and Sons.
- DeGroot, M. H. (1970): Optimal Statistical Decisions, McGraw Hill.
- Gemerman, D. (1997): Markov Chain Monte Carlo Stochastic Simulation for Bayesian Inference, Chapman Hall.
- Leonard, T. and Hsu, J. S. J. (1999): Bayesian Methods, Cambridge University Press.
- Robert, C. P. (1994): The Bayesian Choice: A decision Theoretic Motivation, Springer.

SEMESTER	: IV
COURSE CODE	: STA-DE-544(iii)
COURSE TITLE	: ORDER STATISTICS
CREDITS	:4

COURSE OUTCOMES

On completion of the course, students should be able to:

CO1. Understand the basic properties of Order statistics.

CO2. Explain Probability mass function of order statistics arising from discrete and distributions.

CO3. Examine order statics of various types of discrete and continuous distributions

CO4.Explains the properties and relations of moments of Oder statistics.

CO5. Realize the difference between discrete and continuous probability distributions.

CO6. Explain the estimation and prediction under Order statistics.

CO7. Explain the concept of order statistics and solving problems related to it

CO8. Understanding concept of Record value and Concomitant Order statistics and their applications

MODULE OUTCOMES

Sl. No:	Outcomes	Taxonomy level
	On completion of each module, students should be able	
	to:	
Module 1	M01. Explains the basic concepts of distribution of	Understand
	single order statistic, joint distribution of	
	two or more order statistics.	
	M02. Verify the Markov property of Order statistics.	Apply
	M30. Examine the various properties	Remember
	of Order statistics.	
	M04 Explain the concept of order statistics	Remember
Module 2	M01. Explain the moments of order statistic and its	Understand
	properties.	
	M02. Derive the recurrence relations on the single and	Remember
	product moments of order statistics.	Kememoer
	M03. Describe Order statistics from symmetric population.	Remember
Module 3	M01. Examine order statics of various types of discrete and	Apply
	continuous distributions and articulate their properties	
Module 4	M01. Explain the different estimators used in	Remember
	order statistics	
	M02.Examine prediction of order statistics.	Apply
	M03. Find the confidence interval using sample quantile.	Analysis
Module 5	M01. Explains the concept of Record value and its application.	Understand
	M02. Explains the concept of Concomitant Order statistics	Understand
	and application	

COURSE CONTENT

MODULE I: Basic distribution theory: Distribution of single order statistic, joint distribution of two or more order statistics, conditional distributions and Markov chain property. Distribution of median, range and mid-ranges, Probability mass function of order statistics arising from discrete

distributions.

MODULE II: Moments of order statistics, Identities on the moments of order statistics, recurrence relations on the single and product moments of order statistics. Discussion of the above relation for symmetric population.

MODULE III: Order statistics from specific population such as Bernoulli and three point discrete

uniform distribution, exponential distribution, uniform, power function, normal and logistic distributions.

MODULE IV: Order statistics in statistical inference: Order statistics and sufficiency, linear estimations of location and scale parameters, Gupta's simplified linear estimator, prediction of order statistics, confidence intervals using sample quantile.

MODULE V: Record values: Definition and distribution theory of record values, prediction of future records and applications. Concomitants of order statistics: basic distribution theory and illustrations using bivariate samples arising from Morgenstern Family of Distributions. Applications of concomitants of order statistics.

REFERENCES

- Arnold, B. C. and Balakrishnan, N. (1989) : Relations, Bounds and Approximations for order statistics, Lecture notes in Statistics No. 53, Springer- Verlag, New York.
- Arnold, B. C., Balakrishnan, N. and Nagaraja, H. N. (1992) : A first course in Order Statistics, John Wiley, New York.
- David, H. A. and Nagaraja, H. N. (2003): Order statistics, 3rd edition, John Wiley, New York.
- Sarhan, A. E. and Greenberg, B. G. (1962): Contributions to Order Statistics, John Wiley, New York.

SEMESTER	: IV
COURSE CODE	: STA-DE-545(i)
COURSE TITLE	: REGRESSION ANALYSIS AND ECONOMETRIC METHODS
CREDITS	:4

COURSE OUTCOMES

On completion of the course, students should be able to:

CO1: Describe simple and multiple linear regression models and its properties CO2: Apply principle of least square method to estimate the parameters in simple and multiple linear regression models.

CO3: Identify multicollinearity problem, its consequences.

CO4: Discuss the problem of estimation of parameters when multicollinearity occurs.

CO5: Explain the Farrar –Glauber test for multicollinearity.

CO6: Describe Aitken generalized least square method of estimation.

CO7: Identify heteroscedastic disturbance.

CO8: Explain Gold field and Quandt test and Glesjer test.

CO9: Identify auto correlation and its consequences.

CO10: Explain the consequence of the presence of error in variables while estimating the parameters of a structural equation.

CO11: Discuss ILS, 2SLS, least variance ratio, full-information maximum likelihood and 3SLS method of estimation.

CO12: Perform identification problem in econometrics.

MODULE OUTCOMES

Sl. No:	Outcomes	Taxonomy level
	On completion of each module, students should be able	
	to:	
Module 1	MO1. Explain simple linear regression model	Understand
	MO2. Describe least square estimators	Remember
	MO3. Articulate to inference regarding regression parameters	A 1
	MO4. Explain ANOVA	Apply Understand
Module 2	MO1. Explain multiple linear regression models	Understand
11104410 2	MO2. Explain inference regarding multiple regression	Analysis
	parameters	TT 1 . 1
	MO3. Explain Polynomial Regression models	Understand
Module 3	MO1. Establish the scope of econometrics	Evaluate
	MO2. Explain general linear regression model	Understand
	MO3. Explain multicollinearity	Understad
	MO4. State and prove Farrar-Glauber test for multicollinearity.	Remember
Module 4	MO1. Explain Heteroscedasticity	Understand
	MO2. Explain test for homogeneity of variances	Understand
	MO3. Explain auto-correlation	Understand
Module 5	MO1. Explain estimation in simultaneous equation model	Understand
	MO2. Establish 2 SLS estimation and 3 SLS estimation	Apply
	MO3. Discuss identification problems	Apply

COURSE CONTENT

MODULE I: Simple linear regression models, Assumptions of the linear stochastic regression model, Least square estimators, Properties of the least square estimates, Inference on regression parameters, Analysis of variance, Prediction.

MODULE II: Multiple linear regression models, Estimation of the model parameters, Testing in multiple regression, Confidence intervals in multiple regression, Prediction of new observations. Polynomial Regression models.

MODULE III: Definition and scope of econometrics, Methodology of econometric analysis, General linear regression model – Linear restrictions, significance test and confidence intervals, Multicollinearity problem - meaning, consequences, detection, estimation of parameters, Farrar-Glauber test for multicollinearity.

MODULE IV: Generalized least squares (GLS) method of estimation (Aitken), Heteroscedastic disturbances, Pure and mixed estimation, Test for homogeneity of variances, Gold field and Quandt test, Glesjer test, Auto correlation-meaning, sources and consequences, Tests for autocorrelation – Durbin Watson, Von-Neumann, Errors in variables, Dummy variables, Lagged variables, Linear regression with stochastic regressors, Instrumental variable estimation.

MODULE V: Estimation in simultaneous equation model, Recursive systems, Structural and reduced forms, Indirect least squares (ILS), 2 SLS estimation, 3 SLS estimation, Identification problem, Restrictions on structural parameters-rank and order conditions, Restrictions on variances and covariances, Full-Information maximum likelihood method.

REFERENCES

- Apte, P.G. (1990): Text book of Econometrics, Tata Mc Graw Hill.
- Gujarati, D (1979): Basic Econometrics, McGraw Hill.
- Johnston, J. (1984): Econometric Models, Third edition, McGraw Hill.
- Koutsoyiannis, A (1979): Theory of Econometrics, Macmillian Press.
- Montgomery, D.C., Peck, E.A. and Vining, G.G. (2007): Introduction to Linear Regression Analysis, John Wiley, India.
- Theil, H. (1982): Introduction to the Theory and Practice of Econometrics, John Wiley.
- Wetherill, G.B. (1986): Regression Analysis with Application, Chapman Hall.

SEMESTER	: IV
COURSE CODE	: STA-DE-545(ii)
COURSE TITLE	: ACTUARIAL STATISTICS
CREDITS	:4

COURSE OUTCOMES

On completion of the course, students should be able to:

CO1. Develop a greater understanding of statistical principles and their application in actuarial statistics.

CO2. Describe the core areas of actuarial practice and relate to those areas actuarial principles, theories and models.

CO3. Describe estimation procedures for lifetime distributions.

CO4 Explain the concept of survival models.

CO5. Understand the application of knowledge of the life insurance environment.

CO6. Describe Net premiums and its various types.

CO7. Expand their applied knowledge in various specialized areas of actuarial studies and statistics.

Sl. No:	Outcomes	Taxonomy level
	On completion of each module, students should be able	
	to:	
Module 1	M01. Explains the utility theory and insurance.	
	M02. Explain survival function and application.	
	M30. Examine the properties of force of mortality.	
	M04 Define Life tables and its relation with survival function, examples.	
Module 2	M01.Explain Multiple life functions and its properties.	
	M02. Articulate the insurance and annuity benefits through	
	multiple life functions evaluation for special mortality laws.	
	M03. Explains the Multiple decrement tables.	
	M04.Describe net single premiums and their numerical	
	evaluations.	
Module 3	M01.Define Distribution of aggregate claims.	
	M02. Derive the compound Poisson distribution and explain its applications.	
	M03. Explain Principles of compound interest and its attributes.	
Module 4	M01. Explain the Life insurance and its types.	
	M02 : Describe Insurance payable at the moment of	
	death and at the end of the year of death-level benefit	
	insurance	
	M03. Explain the Life annuities and its types.	
Module 5	M01. Explain Net premiums and its importance	
	M02. Distinguish between Continuous and discrete premiums	

MODULE OUTCOMES

M03. Accumulation type benefits.	

MODULE I: Utility theory, insurance and utility theory, models for individual claims and their sums, survival function, curtate future lifetime, force of mortality. Life tables and its relation with survival function, examples, assumptions for fractional ages, some analytical laws of mortality, select and ultimate tables.

MODULE II: Multiple life functions, joint life and last survivor status, insurance and annuity benefits through multiple life functions evaluation for special mortality laws. Multiple decrement tables, central rates of multiples decrement, net single premiums and their numerical evaluations.

MODULE III: Distribution of aggregate claims, compound Poisson distribution and its applications. Principles of compound interest: Nominal and effective rates of interest and discount, force of interest and discount, compound interest, accumulation factor, continuous compounding.

MODULE IV: Life insurance: Insurance payable at the moment of death and at the end of the year of death-level benefit insurance, endowment insurance, differed insurance and varying benefit insurance, recursions, commutation functions. Life annuities: Single payment, continuous life annuities, discrete life annuities, life annuities with monthly payments, commutation functions, varying annuities, recursions, complete annuities immediate and apportion able annuities-due.

MODULE V: Net premiums: Continuous and discrete premiums, true monthly payment premiums, apportion able premiums, commutation functions, accumulation type benefits. payment premiums, apportion able premiums, commutation functions, accumulation type benefits.

REFERENCES

- Beard, R.E., Penlikainen, T. and Pesonnen, E (1984): Risk Theory: The Stochastic Basis of Insurance, 3rd Edition, Chapman and Hall, Londan.
- Bowers, N.L., Gerber, H.U., Hickman, J.E., Jones, D.A. and Nesbitt, C.J. (1997): Actuarial Mathematics', Society of Actuarias, Ithaca, Illiois, U.S.A., second Edition.
- Neill, A. (1977): Life Contingencies, Heineman.

SEMESTER	: IV
COURSE CODE	: STA-DE-545(iii)
COURSE TITLE	: BIOSTATISTICS

CREDITS : 4

COURSE OUTCOMES

On completion of the course, students should be able to:

- CO1. Understand the principal concepts about biostatistics.
- CO2. Recognize the definition and the relation with real life applications.
- CO3. Interpret data via various existing distributions.
- CO4. Predict statistical decision through hypothesis testing.

MODULE OUTCOMES

Sl. No:	Outcomes	Taxonomy level
	On completion of each module, students should be able	
	to:	
Module 1	M01. Distinguish various type of survival distributions	Understand
	and their survival time.	
	M02. Familiar with different test procedures and	Remember
	comparison of two survival distribution.	
Module 2	M01. Explain and exemplify the concept of censoring	Understand
	methods.	
	M02. Evaluate the biological examples with different type of	Evaluate
	censoring.	
Module 3	M01. Articulate the concept of risk theory.	Apply
	M02. Explain indices for measurement of probability of death	Understand
	under competing risks and inter-relation.	
	M03. Evaluate various methods of estimation under	Evaluate
	competing risk theory.	
	M04. Distinguish independent and dependent risks.	Remember
Module 4	M01. Explain basic biological concepts in genetics.	Understand
	M02. Describe Mendel's law.	Remember
	M03. Explain mutation and genetic drift.	Understand
	M04. Discuss and estimate linkage in heredity.	Apply
Module 5	M01. Explain different Phases of clinical trials.	Understand
	M02. Describe designs for comparative trials.	Apply
	M03. Express sample size in a fixed sample design.	Apply

MODULE I: Functions of survival time, survival distributions and their applications viz. Exponential, Gamma, Weibull, Rayleigh, Lognormal, death density function for a distribution having bathtub shape hazard function. Tests of goodness of fit for survival distributions (WE test for exponential distribution, W -test for lognormal distribution, Chi-square test for uncensored observations). Parametric methods for comparing two survival distributions viz. L.R test, Cox's F-test.

MODULE II: Type I, Type II and progressive or random censoring with biological examples, Estimation of mean survival time and variance of the estimator for type I and type II censored data with numerical examples. Non-parametric methods for estimating survival function and variance of the estimator viz. Actuarial and Kaplan -Meier methods.

MODULE III: Competing risk theory, Indices for measurement of probability of death under competing risks and their inter-relations. Estimation of probabilities of death under competing risks by maximum likelihood and modified minimum Chi-square methods. Theory of independent and dependent risks. Bivariate normal dependent risk model. Conditional death density functions. Stochastic epidemic models: Simple and general epidemic models (by use of random variable technique).

MODULE IV: Basic biological concepts in genetics, Mendel's law, Hardy- Weinberg equilibrium, random mating, distribution of allele frequency (dominant/co-dominant cases), Approach to equilibrium for X-linked genes, natural selection, mutation, genetic drift, equilibrium when both natural selection and mutation are operative, detection and estimation of linkage in heredity.

MODULE V: Planning and design of clinical trials, Phase I, II, and III trials. Consideration in planning a clinical trial, designs for comparative trials. Sample size determination in fixed sample designs.

REFERENCES

- Biswas, S. (1995): Applied Stochastic Processes. A Biostatistical and Population Oriented Approach, Wiley Eastern Ltd.
- Cox, D.R and Oakes, D. (1984): Analysis of Survival Data, Chapman and Hall.
- Elandt, RC. and Johnson (1975): Probability Models and Statistical Methods in Genetics, John Wiley & Sons.
- Ewens, W. J. (1979): Mathematics of Population Genetics, Springer Verlag.
- Ewens, W. J. and Grant, G.R (2001): Statistical methods in Bioinformatics: An Introduction, Springer.
- Friedman, L.M., Furburg, C. and DeMets, D.L. (1998): Fundamentals of Clinical Trials, Springer Verlag.
- Gross, A. J. and Clark, V.A. (1975): Survival Distribution; Reliability Applications in

Biomedical Sciences, John Wiley & Sons.

SEMESTER	: IV
COURSE CODE	: STA-CC-546
COURSE TITLE	: DISSERTATION
CREDITS	:4

Course Outcomes

On completion of the course, students should be able to:

CO1. study and examine data thoroughly and comprehensively towards attaining precision both in detail and in depth.

CO2. Conducts research and analysis crucial to substantiate the report.

SEMESTER	: II
COURSE CODE	: STA-GC-521
COURSE TITLE	: ELEMENTS OF PROBABILITY THEORY
CREDITS	:2

COURSE OUTCOMES

On completion of the course, students should be able to:

C01. Explain probability space

- C02. Evaluate limits of sequence of events
- C03. State and prove Bayes theorem.
- C04. Explain random variables
- C05. Distinguish probability distribution and distribution function
- C06. Explain properties of distribution
- C07. Calculate expectation and moments of various random variables.

C08. Explain the concept of convergence and check for the of convergence of a given sequences of random variables.

C09. Find the expressions for the characteristic function of a random variable and verify its properties

CO10. Apply the various laws of large numbers to sequences of random variables

MODULE OUTCOMES

Sl. No:	Outcomes	Taxonomy
	On completion of each module, students should be able to:	Level
Module 1.	M01. Explain probability space and limits of sequence of random	Understand
	variance	
	M02. State and prove monotone and continuity properties of	Remember
	probability measure.	
	M03. Explain addition theorem	Understand
	MO4. State and prove Borel-Cantelli Lemma	Remember
	MO5. Explain conditional probability and Bayes theorem	Apply
Module: 2	M01. Explain random variables	Understand
	M02. Explain properties of distribution function	Evaluate
	M03. Describe moments and articulate to problems related to	Analysis
	moments	
	MO4. State Markov and Liaponov inequality	Remember
Module 3	MO1. Explain characteristic function and its properties	Understand
	MO2. Explain inversion theorem on distribution function	Understand
	MO3. Distinguish continuity theorem and Bochner-Khintchines	Remember
	theorem of characteristic function	
Module 4	MO1. Explain convergence of sequence of random variables	Understand
	MO2. Apply the concepts of convergence to sequence of random	Apply
	distributions.	
Module 5	MO1. State and prove various laws of large numbers	Remember
	MO2. Apply various laws to sequence of random variables	Apply
COUDER	CONTENT	<u>-</u> PP-J

COURSE CONTENT

MODULE I: Probability space, limit of sequence of events, monotone and continuity properties of probability measure, addition theorem, independence of finite number of events, sequence of events, Borel-Cantelli lemma, Borel zero one law. Conditional Probability and Bayes Theorem.

MODULE II: Random variable, its probability distribution and distribution function, properties of distribution function, expectation and moments of random variables, Markov and Liaponov inequalities.

MODULE III: Characteristic function and their elementary properties, uniform continuity and non-negative definiteness of characteristic function, inversion theorem (proof not required), uniqueness theorem, Fourier inversion theorem, continuity theorem (proof not required), Bochner-Khintchine theorem of characteristic functions(proof not required).

MODULE IV: Stochastic convergence of sequence of random variables:- convergence in distribution, convergence in probability, almost sure convergence and convergence in the r-th mean, their interrelationships.

MODULE V: Stochastic convergence of series of random variables:-Law of large numbers, weak law of large numbers: Bernoulli, Chebyshev & Khintchine, Kolmogorov inequality, strong law of large numbers: Kolmogorov- iid & non-iid cases (proof not required), central limit theorem: Demoiver-Laplace, Liapounov (without proof), Lindberg-Feller (without proof).

REFERENCES

- Bhat, B.R. (1985): Modern Probability Theory: An Introductory Text Book, 2nd edition, Wiley Eastern.
- Gnedenoko, B.V. (1969): The Theory of Probability, Mir Publishers, Moscow.
- Laha, R.G. and Rohatgi, V.K. (1979) : Probability Theory, John Wiley, New York
- Loeve, M. (1968): Probability Theory, D.Van Nostrand Co.Inc., Princeton, New Jersey.
- Pakshirajan, R.P. (1983): Converse of Central Limit Theorem, Journal of the Kerala Statistical Association.

SEMESTER	: III
COURSE CODE	: STA-GC-531
COURSE TITLE	: ELEMENTARY STATISTICAL METHODS
CREDITS	:2

COURSE OUTCOMES

On completion of the course, students should be able to:

C01. Calculate the various measures of central tendency and dispersion, correlation coefficient, regression equations etc.

C02. Fit various regression equations to data sets

C03. Explain the concepts of statistical surveys, sampling, census and various sampling methods

C04. Prepare a questionnaire and conduct a sample survey

C05. Articulate the concepts of random variable and random distributions

C06. Describe the properties of various standard distributions and sampling distributions

C07. Conduct tests of significance for population mean(s), variance(s) (one and two samples), F-test, Testing the significance of a correlation coefficient.

C08. Carry out Chi square test of goodness of fit and testing independence of attributes. Analysis of variance - One way and two-way classifications.

Module Outcomes

Sl. No:	Outcomes	Taxonomy
	On completion of each module, students should be able to:	Level

Module 1.	M01. Calculate the Measures of central tendency and dispersion	Apply
Totoute 1.	M01. Calculate the Measures of central tendency and dispersion M02. Find out the coefficient of correlation and regression equations for given data sets.	Apply
	M03. Fit appropriate regression equations to data sets	Create
Module: 2	M01. Articulate concepts of statistical surveys, sampling and census	Understand
	M02. Distinguish between the three methods of sampling	Analysis
	M03. Design a sample survey and carry out the survey	Create
Module 3	M01. Articulate concepts of random variables, their properties and functions of random variables	Understand
	M02. Describe and distinguish between the various standard distributions and sampling distributions like Binomial, Poisson and Normal. t, F and Chi square.	Apply
	M03. Derive the various functions of distributions like Binomial, Poisson and Normal. t, F and Chi square.	Evaluate
	M04. Solve various problems associated with distributions like Binomial, Poisson and Normal. t, F and Chi square.	Evaluate
	M05. Fit Poisson, binomial and normal distributions to data sets	Apply
Module 4	M01. Describe various tests of significance and concepts of statistical inference: standard large sample tests and small sample tests, tests for population mean(s), variance(s) (one and two samples), F-test, Testing the significance of a correlation coefficient.	Understand
	M02: Test the various hypothesis associated with standard large sample tests and small sample tests, tests for population mean(s), variance(s) (one and two samples), F-test, Testing the significance of a correlation coefficient.	Apply
	M03. Design tests of hypotheses dealing with standard large sample tests and small sample tests, tests for population mean(s), variance(s) (one and two samples), F-test, Testing the significance of a correlation coefficient.	Create
Module 5	M01. Explain the various concepts of Chi square test of goodness of fit. Contingency tables and testing independence of attributes. Analysis of variance - One way and two way classifications.	Understand
	M02. Carry out tests based on Chi square test of goodness of fit. and testing independence of attributes; Analysis of variance - One way and two-way classifications.	Apply
	M03. Design a test of hypothesis for testing the Chi square test of goodness of fit. Contingency tables and testing independence of attributes. Analysis of variance - One way and two way classifications.	Create

MODULE I: Measures of central tendency and dispersion. Correlation and Regression. Least squares method of curve fitting.

MODULE II: Statistical surveys, Sampling and census, Important methods of sampling – Simple random, Systematic and Stratified sampling.

MODULE III: Random variables, Expectation and variance of random variables. Basic distributions: Binomial, Poisson and Normal. Sampling distributions: t, F and Chi square.

MODULE IV: Test of significance, basic concepts of statistical inference, standard large sample tests and small sample tests, tests for population mean(s), variance(s) (one and two samples), F-test, Testing the significance of a correlation coefficient.

MODULE V: Chi square test of goodness of fit. Contingency tables and testing independence of attributes. Analysis of variance - One way and two way classifications.

REFERENCES

- Cochran, W.G. (1977). Sampling Techniques, Wiley Eastern Ltd.
- Johnson ,N.L. and Kotz,S. (1969) Distributions in Statistics; Discrete distributions. John Wiley and Sons ,New York.
- Johnson ,N.L. . Kotz,S. and Balakrishnan, N (1994)Continuous Univariate Distributions 1 , 2nd Edition John Wiley and Sons ,New York.
- Johnson ,N.L. . and Kotz,S. (1995) Continuous Univariate Distributions -2 ,2nd Edition, John Wiley and Sons ,New York.
- Murthy, M. N. (1967). Sampling Theory and Methods, Statistical Publishing Society, Calcutta.
- Rohatgi,V.K.(1990) An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern Ltd.
- Singh, D. and Chaudhary, F.S. (1986). Theory and Analysis of Sample Survey Designs, Wiley Eastern Ltd.